
The Open Neuroimaging Journal ISSN: 1874-4400
DOI: 10.2174/0118744400298093240520070257, 2024, 17, e18744400298093 1

RESEARCH ARTICLE OPEN ACCESS

Stroke Prognostication in Patients Treated with
Thrombolysis Using Random Forest

Reyhan Eddy Yunus1,2,*, Salim Harris1, Prijo Sidipratomo1, Aria Kekalih1, Wisnu Jatmiko3, Jacub
Pandelaki1,  Andhika  Rachman1,  Syahrul4,  Vanya  Vabrina  Valindria4,  Muhamad  Febrian
Rachmadi3,  Muhammad Faris  Muzakki6,  Andrew Tjuatja1,  Anthony Eka Wijaya1  and Devina
Teresa1

1Faculty of Medicine, Universitas Indonesia-Rumah Sakit Umum Pusat Nasional Cipto Mangunkusumo, Indonesia
2Doctoral Program in Medical Sciences, Faculty of Medicine, Universitas Indonesia, Indonesia
3Faculty of Computer Science, Universitas Indonesia, Indonesia
4Faculty of Medicine, Universitas Syiah Kumala, Indonesia
5Imeri Faculty of Medicine, Universitas Indonesia, Indonesia
6School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia

Abstract:
Background:  Early  identification  and  accurate  prognostication  of  acute  ischemic  stroke  are  crucial  due  to  the
narrow time frame for treatment and potential complications associated with thrombolysis intervention.

Objectives: This pilot study in the Southeast Asian region using Indonesian data, aims to develop a novel machine
learning model  for  predicting the clinical  outcome of  acute ischemic stroke patients  following thrombolysis.  The
model seeks to aid clinicians in identifying eligible candidates for thrombolysis therapy.

Methods: This retrospective study at Cipto Mangunkusumo Hospital’s medical records from 2014 to 2023 used non-
contrast brain CT, clinical, and lab data to develop a Random Forest (RF) algorithm predicting Δ NIHSS (National
Institutes of Health Stroke Scale) score, indicating functional outcome. The developed RF model was applied to a
validation dataset, with performance evaluated. The study also compared RF with a previous Convolutional Neural
Networks (CNN) algorithm.

Results:  This  study  included 145 acute  ischemic  stroke  patients  treated with  thrombolysis.  It  demonstrated the
promising feasibility of using machine learning algorithms to predict clinical outcomes in this population. Integration
of CT, clinical, and laboratory data as inputs to the RF models shows the best prediction performance (Accuracy =
0.75, AUC = 0.72, F1=0.50, Precision=0.60, Sensitivity=0.43, Specificity=0.88)

Conclusions:  The  application  of  machine  learning  shows  the  potential  to  enhance  the  selection  process  for
thrombolysis intervention in treating acute ischemic stroke. Further research with larger multicenter datasets and
additional imaging modalities is required to improve predictive ability.
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1. INTRODUCTION
Stroke is the leading cause of both death and disability

in  Indonesia,  with  the  highest  mortality  rate
(193.3/100,000)  and  disability-adjusted  life  years
(3382.2/100,000)  among  Southeast  Asian  nations.  The
2018  Riset  Kesehatan  Dasar  (RISKESDAS),  a  national-
scale community research, reports a stroke prevalence of
10.9/1,000,000  individuals  in  Indonesia.  Prompt  and
accurate  intervention  is  vital  to  minimize  the  associated
risk  of  disability  and  mortality  [1].  Intravenous
thrombolytic therapy with recombinant tissue plasminogen
activator  (r-tPA)  is  the  established  treatment  for  acute
ischemic stroke cases with an onset of less than 4.5 hours
[2]. However, its use should be selective due to potential
complications, including intracranial haemorrhage, major
systemic  bleeding,  and  angioedema  [3].  Indications  and
contraindications  for  r-tPA  thrombolytic  therapy  are
determined  by  brain  imaging,  the  patient's  clinical
condition,  and  laboratory  values  [4].  Computed
tomography scan (CT) is the preferred modality for brain
imaging  in  stroke  cases  due  to  its  exceptional  accuracy,
speed, and availability in ruling out other pathologies [5].
Stroke  severity,  assessed  by  the  National  Institutes  of
Health Stroke Scale (NIHSS) score, serves as an indicator
and  predictor  of  successful  reperfusion  therapy.  NIHSS
can  evaluate  patients'  functional  outcomes  and  identify
those who may benefit or be at risk for complications from
either the therapy or the stroke itself [6, 7, 8].

The  rapid  advancement  of  technology  has  led  to
increased  utilization  of  machine  learning  for  imaging-
based stroke prognostication, offering advantages such as
objective  and  expeditious  evaluations,  fine  voxel-level
pattern detection capability, and large-scale applicability
[9, 10]. The Random Forest (RF) algorithm, a tree-based
machine learning approach, has been widely employed in
CT scan imaging to predict stroke clinical outcomes [11,
12]. A recent study by Monteiro et al. demonstrated that
RF implementation yields a prediction model with optimal
performance in  predicting  clinical  outcomes for  patients
following acute ischemic stroke, as measured by Modified
Rankin  Scale  (mRS)  scores  after  three  months,  with  an
area  under  the  receiver  operating  characteristic  (ROC)
curve  (AUC)  value  of  0.936±0.34.  The  most  effective
predictor  variable  in  this  model  is  NIHSS  [12].

Given  the  narrow  time  frame  for  treating  acute
ischemic stroke and the potential complications associated
with  thrombolysis  intervention,  early  identification,  and
accurate clinical outcomes’ prognostication are essential
to  ensure  prompt  and appropriate  treatment.  This  study
has the potential to be a significant breakthrough because,
to the best of the authors' knowledge, there is currently no
clinical  outcome  prediction  model  for  acute  ischemic
stroke  utilizing  data  from  Indonesia.  Our  study  differs
from  previous  ones  in  that  it  incorporates  laboratory
values that have yet to be included. By utilizing machine
learning,  the author  aims to  develop a  model  capable  of
predicting  the  clinical  outcome  (∆  NIHSS)  of  acute
ischemic stroke patients following thrombolysis based on
brain CT scans, clinical data, and laboratory values. This

model  is  expected  to  enhance  the  efficiency  of  acute
ischemic stroke management by providing clinicians with
additional  information  to  aid  in  their  decision-making
regarding  thrombolysis  intervention.

2. METHODS

2.1. Data Collection
In this study, we leveraged patient data obtained at the

initial presentation, comprising a comprehensive spectrum
of  clinical,  laboratory,  and  non-contrast  brain  CT  data
sourced from the  medical  records  and Picture  Archiving
Communication  System (PACS)  of  Cipto  Mangunkusumo
Hospital,  Jakarta.  The  inclusion  criteria  encompassed
individuals  who  had  encountered  acute  ischemic  stroke
and  undergone  thrombolysis  treatment  within  a  decade-
long  period  spanning  from  November  2014  to  February
2023, resulting in a total of 145 patients.

The  clinical  dataset  employed  in  this  research
comprised  six  essential  parameters:  stroke  onset,  age,
systolic and diastolic blood pressure, NIHSS scores upon
admission  (NIHSS_In),  and  24  hours  after  therapy
(NIHSS_24).  With  additional  laboratory  data  of
prothrombin  time  (PT),  activated  partial  thromboplastin
time (APTT), fibrinogen levels, and random blood glucose
(RBG).

After  acquiring  non-contrast  brain  CT  data  with
substantial  slice  thickness  from  PACS,  an  imperative
preprocessing  step  was  undertaken  to  optimize  the  CT
dataset  for  subsequent  analyses.  The  integration  of
clinical, laboratory, and post-processed CT data served as
vital inputs for predicting the Δ NIHSS score, representing
the difference between NIHSS_In and NIHSS_24 scores,
crucial for understanding the progression and outcomes of
acute ischemic stroke post-thrombolysis treatment.

The acquired Δ NIHSS scores are segmented into two
distinctive  classes—Significant  reduction  (≥4)  and
Insignificant  reduction  (<4)—outlined  in  Table  1.  This
classification  schema  was  adopted  to  structure  and
categorize  the  responses  observed  post-thrombolysis
treatment  in  other  studies  [13,  14].  In  this  study,  a
significant  reduction  was  labelled  as  negative,  meaning
there is an improvement in clinical outcome 24 hours after
thrombolysis therapy.
Table 1. Categorization (2) label rules.

No Constrain Label

1 Δ NIHSS ≥ 4 Significant reduction (-)
2 Δ NIHSS < 4 Insignificant reduction (+)

2.2. Data Preprocessing
The  first  step  in  processing  the  data  was  to  use  the

nibabel  library  in  Python  to  load  the  volumetric  data  in
NIFTI  format.  This  step  was  necessary  due  to  the
complexities  of  medical  imaging  datasets,  particularly
those  from  modalities  like  MRI  or  CT  scans.  Nibabel
library ensures accurate handling of 3D medical imaging
data, maintaining data integrity throughout the extraction
process. (Fig. 1).
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Fig. (1). Data preprocessing.

Fig. (2). CT data transformation.
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Subsequently,  the  3D  volumetric  data  was  sampled
into multiple 2D image slices. This transformation into 2D
slices  facilitated  subsequent  algorithms  and  models
tailored  for  2D  image  analysis.  Transformation  of  the
image  data  into  a  tabular  format  was  accomplished
through the application of  an autoencoder [15,  16].  This
step focused on reducing the dimensionality of the image
data while preserving salient information. Dimensionality
reduction  helped  to  reduce  computational  burdens  and
expedite  more  efficient  processing  in  subsequent
analytical stages. Converting the image data into a tabular
structure made it easier to integrate with diverse datasets,
forming  a  robust  foundation  for  various  analytical
techniques  and  models  tailored  for  tabular  data.  The
visualization  of  CT  data  is  outlined  in  Fig.  (2).

CT scans, clinical records, and laboratory findings are
unified in a single data frame. This confluence enabled a
comprehensive  analysis,  identifying  correlations  and
patterns across different data types, potentially revealing
insights into underlying medical conditions or outcomes.

Imputation  by  linear  regression  was  used  to  replace
missing  values  and  to  ensure  dataset  integrity  [17].
Additionally, standardizing the dataset through L2 norm-
based normalization, which scales the data to a range of 0
to  1,  ensured  uniformity  and  comparability  across
different  features.  This  step  effectively  addressed  the
issue of varying scales in the dataset, promoting unbiased
analyses and enhancing the interpretability and reliability
of subsequent models and findings.

2.3. Data Imputation
In  the  realm  of  machine  learning,  medical  datasets

frequently contain missing values arising from a variety of
factors such as equipment malfunction, incomplete patient
records, data corruption, and differences in data recording
sources  [x+1].  These  data  gaps  can  manifest  across
diverse  types  of  medical  information,  encompassing
imaging  scans,  clinical  measurements,  and  laboratory
tests.  Given  the  pivotal  role  of  medical  data  in  machine
learning  models  for  decision-making  in  healthcare
settings, addressing missing values becomes imperative to
uphold  the  reliability  and  accuracy  of  analyses  and
predictions.  Inadequate  handling  of  missing  data  can
introduce  biases,  lead  to  erroneous  conclusions,  and
potentially  impact  patient  care  adversely.  Therefore,
employing effective strategies for imputing missing values
is  crucial  to  maintain  the  integrity  and  usefulness  of
medical  datasets  in  machine  learning  applications.

Imputation  methods  are  vital  for  addressing  missing
values  in  medical  datasets,  with  linear  regression-based
imputation  being  particularly  noteworthy  for  its  ability  to
capture relationships between variables and predict missing
values based on observed data [x+2]. In medical datasets,
where variables are often interconnected, linear regression
provides a systematic approach to imputing missing values
while preserving the underlying data structure.

Linear regression for imputation involves fitting a linear
equation  to  the  observed  data,  where  the  relationship
between  independent  variables  (features)  and  dependent

variable (target) is represented as:
y = β 0+β1x1+β2x2+...+βnxn+ϵ
• y is the dependent variable to be predicted.
• β 0 is the intercept term.
• β1, β2, ... , βn are the coefficients of the independent

variables x1, x2, ... , xn

•  ϵ  is  the  error  term,  representing  the  difference
between  the  observed  and  predicted  values.

The  model  is  trained  using  observed  data  without
missing values, enabling it to predict missing values for the
target variable based on the values of other variables in the
dataset. This process completes the dataset and ensures its
usability  for  subsequent  analyses  and  modeling  tasks.
However, it is essential to validate the model's assumptions,
such  as  linearity  and  homoscedasticity,  to  ensure  the
reliability of the imputed values. Overall, linear regression
provides a robust framework for imputing missing values in
medical datasets, contributing to the integrity and usability
of the data.

[x+1] Liu, M., Li, S., Yuan, H., Ong, M. E. H., Ning, Y.,
Xie,  F.,  ...  &  Liu,  N.  (2023).  Handling  missing  values  in
healthcare data: A systematic review of deep learning-based
imputation  techniques.  Artificial  Intelligence  in  Medicine,
102587.

[x+2] Codella J, Sarker H, Chakraborty P, Ghalwash M,
Yao  Z,  and  Sow  D.  EXITs:  An  ensemble  approach  for
imputing  missing  EHR  data.  In:  2019  IEEE  International
Conference on Healthcare Informatics (ICHI),  IEEE, 2019,
1–3.

2.4. Random Forest
The  RF  algorithm  represents  a  machine  learning

algorithm  constructed  using  multiple  decision  trees
(following the bagging concept) [18]. Notably, this algorithm
offers distinct advantages over conventional tree algorithms.
It  exhibits  enhanced  resistance  to  noise,  mitigating  the
impact of extraneous data points, and it avoids the issue of
overfitting, thus enhancing its predictive accuracy [19, 20].

The RF algorithm, a form of machine learning, operates
in  two  distinct  stages:  model  creation  and  inference
(prediction/classification)  [19]

2.4.1. Model Creation Stage
1. Data and features are randomly selected for each tree.
2. Individual tree-based models are constructed.

2.4.2. Inference Stage
1. Test data is input into each tree, generating decisions

for each tree.
2.  The  decisions  from  each  tree  are  aggregated  using

methods like majority voting or averaging to derive the final
outcome.

Furthermore, for a more comprehensive understanding,
an inference visualization is detailed in Fig. (3), providing a
visual  representation  of  the  described  process.  This
illustration  visually  depicts  the  flow  and  aggregation  of
decisions in the RF algorithm during the inference stage.
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Fig. (3). Decision tree algorithm.

2.5. Model Evaluation
This study meticulously evaluates the performance of

various  experimental  scenarios  by  employing  a  range  of
standard  metrics  tailored  for  classification  tasks.  These
metrics,  encompassing  accuracy,  F1  score,  precision,
recall,  sensitivity,  specificity,  and  AUC  (Area  Under  the
ROC Curve),  collectively  provide  a  robust  assessment  of
the  model's  predictive  capabilities,  enabling  a
comprehensive analysis of its effectiveness across diverse
experimental setups. Notably, the dataset was partitioned
into  development  and  validation  subsets,  with  metrics
generated  solely  using  the  validation  data  to  ensure
unbiased  evaluation.

Accuracy serves as  a  fundamental  metric,  measuring
the model's ability to correctly classify data and providing
a foundational  understanding of  its  overall  performance.
Meanwhile, the F1 score offers a nuanced perspective on
the balance between precision and recall, offering insights
into the model's ability to manage false positives and false
negatives.

AUC,  represented  by  the  Area  Under  the  Receiver
Operating  Characteristic  (ROC)  Curve,  quantifies  the
model's  ability  to  discriminate  between  classes  across
various  thresholds.  Higher  AUC  values  indicate  better

discrimination  performance,  with  1  representing  perfect
classification  and  0.5  indicating  random  classification.
This  metric  is  particularly  valuable  for  evaluating  the
overall  performance  of  the  model  irrespective  of  class
imbalance  or  threshold  selection.

Moreover,  the  selection  of  metrics  depends  on  the
specific  objectives  and  characteristics  of  the  task  under
study.  Precision  and  recall  become  crucial  metrics  in
scenarios where the costs associated with false positives
or false negatives vary significantly. Similarly, sensitivity
and  specificity  play  vital  roles  in  evaluating  the  model's
ability  to  differentiate  between  different  classes,
particularly in scenarios characterized by class imbalance.

By  integrating  these  diverse  metrics,  including
accuracy,  F1  score,  precision,  recall,  sensitivity,
specificity,  and  AUC,  into  the  evaluation  framework,
researchers gain a thorough understanding of the model's
performance  nuances  under  varying  experimental
conditions. Such meticulous assessment, conducted solely
on  the  validation  data,  not  only  guides  decisions
concerning the model's deployment and optimization but
also underscores its  relevance in  real-world applications
where precise classification is paramount.
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2.6. Experiment
The detailed process of the experiment is outlined in

Fig.  (4).  The  initial  phase  involves  loading  the  pre-
processed  clean  dataset.  Subsequently,  the  dataset  is
bifurcated into two main segments: the development and
validation  datasets.  The  validation  data  subset  is
specifically extracted from the primary dataset, spanning
the  timeframe  from  2022  to  2023,  ensuring  the  model's
adaptability and performance on more recent data.

Following  dataset  segmentation,  the  core  phase
involves  constructing  an  RF-based  machine-learning
model.  The  evaluation  of  the  developed  models  is
performed based on predefined metrics. This assessment
is  intended  to  gauge  the  model's  performance,  compare
predictions, and validate the accuracy and robustness of
the  machine  learning  models  generated.  These  metrics
serve  as  critical  benchmarks  to  assess  the  predictive
accuracy,  generalizability,  and  overall  reliability  of  the
constructed  models  in  this  experimental  framework.

To  further  evaluate  the  model's  effectiveness,  we

aimed  to  integrate  an  alternative  architecture  derived
from the research conducted by Bacchi et al.  [21]. Their
study employed a convolutional neural network (CNN) for
predicting  functional  outcomes  following  thrombolysis,
notably  excluding  laboratory  values  from  its  evaluation
criteria.  This  contrast  in  methodology  prompts  a
reconsideration  of  the  model's  construction  and  lends
insight  into  the  potential  impact  of  excluding  certain
variables  in  predictive  models.

Furthermore,  performance  assessments  for  both  RF
and  CNN  models  were  generated  in  three  experimental
scenarios: CT, CT + Clinic, and CT + Clinic + Laboratory.
In this research, we deliberately avoided parameter tuning
to  ensure  a  focus  on  the  models'  inherent  capabilities
without  introducing  potential  biases  from  extensive
parameter  adjustments.  By  refraining  from  parameter
tuning,  we aimed to provide a transparent and unbiased
evaluation  of  the  model's  performance  based  on  their
default  configurations,  ensuring  robust  and  reflective
results.

Fig. (4). Experiment.
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Table 2. Sample characteristics.

Sample Characteristics N Median Min Max

Male 89 (59.7%) - - -
NIHSS_In 145 9.0 1.0 26.0
NIHSS_24 134 7.0 0.0 26.0

Stroke Onset (Minute) 145 150.0 15.0 351.0
Age (Years) 145 59.0 27.0 88.0

Systolic Blood Pressure (mmHg) 128 150.0 90.0 220.0
Diastolic Blood Pressure (mmHg) 128 90.0 45.0 124.0

PT (Second) 140 10.5 9.2 16.9
APTT (Second) 142 32.3 22.2 162.6

Fibrinogen (mg/dL) 116 321.8 132.7 792.1
RBG (mg/dL) 132 138.0 49.0 1522.0

3. RESULTS

3.1. Sample Characteristics
From 145 samples included in this study, the median

age was 59 years (ranging from 27 to 88),  and 59.7% of
the  samples  were  male.  The  median  NIHSS_In  and
NIHSS_24  were  9  (ranging  from 1  –  26)  and  7  (ranging
from  0  –  26).  Notably,  43  patients  (29.7%)  showed
favorable progress according to the criteria of ΔNIHSS ≥

4. Other variables are presented in Table 2 below.

3.2. Feature Analysis
In this study, we employed the Gini Impurity method to

conduct a comprehensive analysis of variable importance,
aimed  at  identifying  key  predictors  significantly
influencing the Δ NIHSS outcome [22]. This method allows
for  the  quantification  of  each  variable's  contribution  to
impurity  reduction  within  the  decision  tree's  sub-nodes,
providing insights into their relative importance.

Fig. (5). Ranking of features using gini impurity.
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Table 3. Classification result of our study (RF).

Scenario Accuracy F1 Precision AUC Sensitivity
(Recall) Specificity TP FN FP TN

CT 0.71 0.36 0.50 0.29 0.29 0.88 2 5 2 15
CT + Clinic 0.71 0.22 0.50 0.62 0.14 0.94 1 6 1 16

CT + Clinic + Lab 0.75 0.50 0.60 0.72 0.43 0.88 3 4 2 15

As depicted in  Fig.  (5),  the  outcomes of  this  ranking
process unveil pivotal insights into the predictive power of
various  factors.  Fibrinogen  emerges  as  the  foremost
predictor, exhibiting a substantial score surpassing 0.175,
indicative of its profound impact on Δ NIHSS. Alongside,
APTT  demonstrates  significant  contribution,  with  scores
ranging from 0.125 to 0.150, highlighting its relevance in
outcome prediction.

Moreover,  Diastolic  Blood  Pressure  and  CT  Images
showcase  notable  importance,  with  scores  ranging  from
0.10 to 0.125, closely followed by PT and RBG within the
same range.  These  findings  underscore  the  multifaceted
nature of predictive variables, each playing a discernible
role in shaping the outcome.

Of  particular  interest  are  factors  like  systolic  blood
pressure,  age,  and  stroke  onset,  which  exhibit
intermediate  importance,  presenting  scores  within  the
range  of  0.05  to  0.10.  While  their  influence  is  not  as
pronounced  as  the  aforementioned  variables,  they
nonetheless  contribute  significantly  to  the  predictive
model.

In conclusion, our analysis utilizing the Gini Impurity
method has provided valuable insights into the predictors
significantly influencing the Δ NIHSS outcome. Fibrinogen
emerges as a pivotal predictor, followed by APTT, Diastolic
Blood Pressure, CT Images, PT, and RBG, each playing a
notable  role  in  outcome  prediction.  Additionally,  factors
such  as  systolic  blood  pressure,  age,  and  stroke  onset
exhibit  intermediate  importance,  further  enriching  our
understanding  of  the  predictive  landscape.  This
comprehensive  examination  underscores  the  complex
interplay  of  various  variables  in  forecasting  Δ  NIHSS,
emphasizing  the  need  for  a  nuanced  approach  to
predictive  modelling  in  stroke  management.  By
elucidating  the  diverse  degrees  of  influence  wielded  by
different  variables,  our  findings  pave  the  way  for
enhanced  predictive  accuracy  and  improved  patient
outcomes  in  clinical  settings.

3.3. Classification of Δ NIHSS
The  evaluation  of  the  Random  Forest  (RF)  model's

performance  reveals  intriguing  trends  across  different
scenarios.  Notably,  there is a consistent improvement in
accuracy, with a gradual enhancement observed from the
CT scenario's initial accuracy of 0.71 to 0.71 in the CT +
Clinic scenario, culminating in a peak accuracy of 0.75 in
the  CT  +  Clinic  +  Lab  scenario.  Concurrently,  the  Area
Under the Curve (AUC) scores show a similar progression,
with values of 0.29, 0.62, and 0.72 for the CT, CT + Clinic,
and  CT  +  Clinic  +  Lab  scenarios,  respectively.  This
sequential improvement underscores the synergistic effect
of integrating clinic and laboratory data, as elucidated in
Table 3.

Furthermore,  the  RF  model  demonstrates  notable
proficiency in distinguishing negative instances compared
to  positive  ones,  as  evidenced  by  its  high  specificity  of
0.88  alongside  a  sensitivity  of  0.43.  This  capability
underscores  the  model's  robustness  in  identifying  cases
where the outcome is not observed, thus contributing to
its overall predictive prowess.

In  conclusion,  our  comparative  analysis  underscores
the  importance  of  considering  architectural  nuances  in
model  selection  for  predictive  tasks.  The  RF  model
showcases  consistent  and  reliable  performance,
particularly beneficial in scenarios where interpretability
and stability  are  paramount.  Conversely,  while  the  CNN
model  may  offer  potential  in  certain  contexts,  its
performance  variability  and  lower  accuracy  suggest  a
need for further refinement or exploration of  alternative
architectures.  By  recognizing  these  differences,
researchers can make informed decisions regarding model
selection,  ultimately  enhancing  predictive  accuracy  and
efficacy in clinical applications.

In  contrast  to  the  performance  trends  observed  with
the  RF  architecture,  the  CNN model,  implemented  from
Bacchi’s architecture, yields diverse outcomes, as outlined
in Table 4. Initially, for the CT scenario, the CNN model
achieves a comparatively lower accuracy of 0.42. Although
there's  a  marginal  improvement  in  accuracy  with  the
incorporation  of  clinic  or  laboratory  data,  reaching  0.54
for CT + Clinic and 0.58 for CT + Clinic + Lab, the CNN
model still falls short when compared to the RF model.

Table 4. Classification result of bacchi’s architecture (CNN).

Scenario Accuracy F1 Precision AUC Sensitivity
(Recall) Specificity TP FN FP TN

CT 0.42 0.59 0.42 0.55 1.00 0.00 10 0 14 0
CT + Clinic 0.54 0.00 0.00 0.54 0.00 0.93 0 10 1 13

CT + Clinic + Lab 0.58 0.00 0.00 0.50 0.00 1.00 0 10 0 14
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Moreover, the CNN model exhibits distinctive patterns
in  various  metrics.  While  specificity  demonstrates  an
increasing trend across the scenarios,  other key metrics
such as AUC, F1 scores, precision, and sensitivity show a
declining trend.  This  divergence in  performance metrics
underscores the nuanced differences between the RF and
CNN architectures in their predictive capabilities.

4. DISCUSSION
This  study  showed  the  promising  feasibility  of

functional  outcome  prediction  on  acute  ischemic  stroke
patients using machine learning algorithms. To the best of
the authors' knowledge, this study was the first to predict
thrombolysis outcomes using machine learning strategies
on the Southeast Asian population with additional input of
laboratory values.

The  selection  of  machine  learning  algorithm  largely
depends on the nature of  the input  data and the sample
size. Our study employed tabular datasets derived from CT
imaging  containing  many  uninformative  features.  As
stated in a previous study by Grinsztajn et al. [23], multi-
layer  perceptron-like  architectures  are  not  robust  to
uninformative  features.  Moreover,  RF  has  demonstrated
its efficacy in addressing challenges that arise from small
sample  sizes,  according  to  another  study  by  Han  et  al.
[24].  A  study  by  Dong  et  al.  [25]  about  genomic  studies
also  illustrates  that  non-deep  learning  models
outperformed  deep  learning  models  in  analyzing  small
dataset samples and imbalanced data structure. Given the
characteristics  of  the  input  data  and  the  limited  sample
size  in  this  study,  RF  is  chosen  as  the  most  suitable
algorithm. The RF algorithm is frequently utilized in the
medical  field  due  to  its  efficacy  in  producing  significant
results  with  lower  sample  size  requirements,  while  also
being robust to high-dimensional data without the need for
a proportionally large training set [26].

Feature  analysis  shows  that  fibrinogen  and  APTT
emerged  as  the  two  most  significant  factors  affecting  Δ
NIHSS outcome, consistent with the pathological embolic
stroke  process.  Fibrinogen  is  the  inactivated  form  of
fibrin,  the  main  constituent  of  thrombus  plaque  in
thrombotic stroke. High fibrinogen levels are correlated to
increased  risk  of  stroke  occurrence  and  severity  [27].  A

study  by  Mehta  et  al.  [28]  showed  that  the  fibrinogen
value of infarct stroke patients at hospital admission was
associated with poor clinical outcomes (OR 1.004 [95% CI
1.000-1.007],  P  =  0.38).  High  levels  of  fibrinogen
potentially  inhibit  the  effectiveness  of  thrombolysis
therapy in ischemic stroke patients [29]. Meanwhile, a low
APTT  value  reflects  high  blood  viscosity,  suggesting  a
higher  chance  of  thrombus  formation  based  on  the
Virchow triad. A study by Lin et al. [30] found that APTT
values  were  significantly  associated  with  neurological
worsening  in  ischemic  stroke  patients  (OR  5  3.72  with
95% CI 1.03-13.5, P 5.046). Non-contrast CT was used in
this study because of its availability throughout hospitals
in Indonesia. Despite not being the gold standard modality
for  stroke  detection,  CT  scans  remain  relevant  for
screening,  assessing,  and  deciding  on  thrombolysis
therapy  for  individuals  experiencing  acute  ischemic
strokes.  Additionally,  CT data serves as a valuable input
for  machine  learning  in  studies  related  to  stroke
prediction, significantly impacting the prediction accuracy
[21, 31, 32].

Upon evaluating the performance metrics, it becomes
evident that RF showcases notable improvements across
several  measures  compared  to  CNN.  Specifically,  RF
achieves higher accuracy in all scenarios (0.42 to 0.71 in
CT, 0.54 to 0.71 in CT + Clinic, and 0.58 to 0.75 in CT +
Clinic  +  Lab),  signalling  an  enhancement  in  overall
predictive  capability.  The  AUC  for  the  RF  Model  also
improves  with  additional  clinical  and  laboratory  data,
depicting  increased  predictive  capability  with  additional
data  integration.  Low  AUC  for  CT-only  models  is
commonly  found  in  machine  learning  computations.
However,  this  model  is  typically  confined  to  research
settings  and  not  widely  utilized  in  practice.  This  study,
being  a  pilot  in  the  Southeast  Asian  region  using
Indonesian  data,  necessitates  further  external  validation
and  impact  study  to  establish  its  effectiveness.
Additionally,  expanding  the  sample  size  could  enhance
model  performance.  The  analysis  highlights  higher
specificity  rates  in  the  RF  model,  signifying  the  model's
capability to identify true negative cases accurately. The
RF  model's  overall  performance  indicates  its  ability  to
assist clinicians in predicting the necessity of thrombolysis
intervention

Table 5. Studies utilizing machine learning for medical diagnosis and prediction.

References Study Objectives ML-based
Approaches Strength Weaknesses

Bachhi et al. [21]
Applying deep learning methods

to predict outcomes of
thrombolysis

CNN
Deep learning strategies provide the best
outcome, optimal results at AUC 0.75 and

accuracy 0.74.
Pilot study, small sample sizes,

single center study.

Wang et al. [11] Predicting functional outcome
(mRS) at 1st and 6th months RF

1 month outcome: AUC 0.899; 6 months
outcome AUC: 0.917; Predicting functional
outcome after ICH is feasible using ML &

RF model that provides the best
prognostication results.

Limited sample size, excluded
large hematomas, did not assess
hematoma or edema expansion,

and no external validation.

Monteiro et al
[12]

Prediction of mRS score (0–2 vs.
3–6) at day-90 RF Optimal results at AUC 0.936 ± 0.34 Single center study, no external

validation, retrospective.
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References Study Objectives ML-based
Approaches Strength Weaknesses

Bentley et al. [31] Prediction of SICH Support Vector
Machine (SVM)

Optimal results at AUC 0.744 (superior to
the SEDAN and HAT scores); Predicts 3 of

4 remote SICHs, none predicted
conventionally.

Limited SICH cases; Image
processing took ∼30 min.

C. C. Chung et al.
[33]

Predict outcomes in AIS patients
given IV thrombolysis using
pretreatment parameters

Artificial Neural
Network (ANN)

Optimal results at accuracy 0.975 & AUC
0.950.

Non-inclusion of high
dimensionality data (CT).

Heo et al. [34] Prediction of mRS
score (0–2 vs. 3–6) at day-90

Deep Neural Network
(DNN)

Large sample set; Optimal results at AUC
0.888; DNN approach provides better

results compared to RF or linear
regression.

Single center study, requires
external validation.

A. A. Khan et al.
[35]

Early and accurate Alzheimer’s
diagnosis using MRI and PET

scans.

Dual-3DM3−AD model,
BEMD, RF,

SVM

Dual-3DM3−AD model exhibits superior
performance with 0.980 of accuracy, with
baseline approach; RF model performed

better than SVM and NB.

Reliance on scarce high-quality
data, heavy computational

demands, limited interpretability
affecting trust, need to

standardize imaging across clinics
for consistent performance.

A. A. Khan et al.
[36]

Identify pneumonia causes from
radiology images, distinguishing

between COVID-19 and other
infections, including Omicron
variants using three CNNs at

each stage.

Convolution Neural
Networks (CNN)

Performed classification & discrimination
of images efficiently; High accuracy of
detection ranging from 0.980 to 0.780.

Limited dataset.

Kujur A. et al. [37]

Evaluating the dependence of
MRI on various CNN models

based on the complexity of the
data for brain tumor and

Alzheimer's disease.

S-CNN, Resnet50,
InceptionV3, Xception

Xception model reported higher scores for
all five performance measures for the Brain

Tumor dataset.

Alzheimer's dataset has high data
complexity with correctly labelled
data observed at 66% and 50%.

A. A. Khan et al.
[38]

Classifying pre-ictal signals in
epilepsy patients using brain

signals.

DNN (with Deep Dual
Patch attention

mechanism), SVM,
CNN, PIES, LSTM,

ANN

DNN with D2PAM has best parameters
compared to other machine learning

methods with accuracy reaching 99% in
sample 4.

Low applicability due to low
number of patients with a

probability of selection bias.

In  contrast  to  the  RF  model,  the  CNN showed lower
accuracy  and  imbalance  performance,  indicating  its
limitations  in  identifying  true  positive  cases.  There  are
some  considerable  differences  between  our  CNN
implemented from Bacchi’s architecture compared to the
study  conducted  by  Bacchi  et  al.  [21].  Bacchi  et  al.  [21]
show  superior  outcomes  with  a  larger  dataset  (204
patients)  and  more  balanced  distribution  between  those
with  favorable  and  less  favorable  outcomes  (53.4%  vs.
46.6%), thus better results were obtained by integrating
CT and clinical  data as inputs (with Accuracy 0.74,  AUC
0.75, Sensitivity 0.56, Specificity 0.93, F1 0.69).

Our study shows that RF can outperform CNN and be
an  alternative  algorithm  in  limited  data  settings  and
uneven  data  distribution.  Integrating  CT,  clinical,  and
laboratory data will enhance RF predictive ability. In the
future, larger multicenter datasets and the incorporation
of  MRI  as  the  gold  standard  in  stroke  assessment  are
required  to  improve  prediction  (Table  5).

CONCLUSION
Our research demonstrates that machine learning (RF)

could  offer  supplementary  insights  for  clinicians  when
choosing which ischemic stroke patients are suitable for
thrombolysis therapy. This is done by predicting patients'
clinical outcomes, specifically the change in NIHSS score
before and 24 hours after thrombolysis therapy (∆ NIHSS)
based  on  brain  CT  scans,  clinical  data,  and  laboratory
values,  which  give  the  best  prediction  results.  Further

studies  and  development  with  larger  datasets,  different
machine  learning  approaches,  or  alternative  imaging
modalities can potentially enhance the model's predictive
performance. Hopefully this research model can undergo
further validation with external data to confirm the validity
of  its  parameters,  while  additional  impact  studies  are
recommended to  demonstrate  substantive  improvements
in the field stemming from this research.

LIST OF ABBREVIATIONS

APTT = Activated Partial Thromboplastin Time
AUC = Area Under the Curve
CNN = Convolutional Neural Networks
CT-scan = Computer Tomography scan
FP = False Positive
FN = False Negative
mRS = modified Rankin Scale
NIFTI = Neuro Informatics Technology Initiative
NIHSS = National Institutes of Health Stroke

Scale
PACS = Picture Archiving Communication

System
PT = Prothrombin Time
RISKESDAS = Riset Kesehatan Dasar

(Table 5) contd.....
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RBG = Random Blood Glucose
RF = Random Forest
r-tPA = recombinant Tissue Plasminogen

Activator
TP = True Positive
TN = True Negative
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