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Abstract:
Aim: This study aims to enhance the precision of Alzheimer's disease (AD) detection by integrating Spatial Attention
Mechanism into a Convolutional Neural Network (CNN) architecture.

Background: Alzheimer's disease is a progressive neurodegenerative disorder characterized by abnormal protein
deposits in the brain, leading to nerve cell loss and posing a significant global health challenge. Early and accurate
detection  is  crucial  for  disease  management  and  treatment  due  to  the  lack  of  a  cure  and  the  disease's  severe
progression.

Objective: The objective of this research is to improve the accuracy of Alzheimer's disease classification using MRI
data by implementing a Spatial Attention Mechanism in a CNN architecture.

Methods: The study utilized T1-weighted MRI data from the OASIS 1 and OASIS 2 datasets. The key innovation is
the Spatial Attention layer incorporated within a CNN model, which computes the average of each channel in the
input feature map.  This  layer guides subsequent layers to focus on critical  brain regions,  enhancing the model's
accuracy in differentiating between Alzheimer's disease stages.

Results:  The  model  achieved  a  validation  accuracy  of  99.69%  with  a  sensitivity  and  specificity  of  1.0000,
demonstrating its reliability in distinguishing between different stages of Alzheimer's disease. The adaptability of the
Spatial  Attention  layer  allows  the  model  to  assign  higher  weights  to  crucial  brain  regions,  improving  its
discriminative  power.

Conclusion: The integration of the Spatial Attention Mechanism into the CNN architecture significantly contributes
to  the  early  detection  of  Alzheimer's  disease,  enabling  timely  interventions.  This  innovative  approach  has  the
potential  to  revolutionize  Alzheimer's  diagnosis  by  enhancing  accuracy  and  offering  a  robust  solution  for
classification.
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1. INTRODUCTION
Alzheimer's Disease (AD) is a devastating global health

crisis  that  affects  millions  of  people,  with  an  expected
increase  in  the  coming  decades  [1].  Thus,  there  is  a
pressing  need  to  develop  more  efficient  and  accurate
diagnostic  techniques  and  methods.  This  complex
progressive  neurodegenerative  disorder  is  characterized
by gradual cognitive decline. It is primarily caused by the
accumulation of abnormal protein aggregates in the brain,
which leads to damage to nerve cells and cognitive decline
[2]. This can cause memory loss, visual-spatial difficulties,
and  behavioral  abnormalities,  ultimately  resulting  in
severe  debilitation.  Not  only  does  Alzheimer’s  Disease
have a profound impact on human lives, but it also poses a
significant financial burden - estimated to cost trillions of
dollars  by  2030  [3].  Therefore,  it  is  crucial  to  prioritize
research  and  measures  aimed  at  managing  and  treating
this disease.

Medical  imaging,  especially  Magnetic  Resonance
Imaging (MRI), is now showcasing its potential in the early
detection  of  Alzheimer’s.  With  its  non-invasive,  high-
resolution capabilities, MRI provides crucial new insights
into the changes that occur in the human body caused by
AD [4,  5].  It  is  a  cornerstone  of  clinical  practice  and  an
essential biomarker for monitoring the development of AD.
This allows for the extraction of valuable data from brain
MRIs, which can then be used to train AI models [6].

Furthermore,  the  role  of  technology  in  improving
healthcare delivery and diagnosis is increasingly evident
as the world continues to struggle with healthcare issues,
as  demonstrated  by  the  significant  impact  of  medical
epidemics and events such as the COVID-19 pandemic [7].
This  enhances  the  usability  of  machine  learning  and  AI
oriented  models  by  leveraging  sufficient  training  data
relevant to the healthcare industry [8, 9]. This can be used
in  conjunction  with  advanced  machine  learning  models
built  on  image  classification,  like  convolutional  neural
networks  (CNNs)  [10].  In  the  long  term,  using  these
models to diagnose Alzheimer’s Disease could relieve the
burden  on  medical  personnel  and  improve  diagnostic
accuracy.

Our research also explores the potential use cases of
Attention  Mechanisms  (more  notably,  spatial  attention)
which are motivated by the human visual attention system
and have been successfully used in a range of applications
[11]. In medical imaging, an attention mechanism system
enables models to concentrate and give more emphasis or
priority to particular areas of interest, which may possibly
improve  accuracy  in  processes  like  object  detection  and
segmentation [12]. In order to help with the crucial work
of  defining  Alzheimer's  disease,  we  are  employing  this
spatial  attention  mechanism  in  our  study,  which,  in
simpler terms, means the model prioritizes certain parts of
the  MRI  images  containing  vital  characteristics  about  a
patient's stage of Alzheimer’s. The main contributions of
the proposed work are:

1.  The  proposed  research  introduces  an  innovative
spatial  attention  mechanism  that  performs  accurate

classification  of  Alzheimer's  disease  stages.
2.  The  proposed  model  demonstrates  a  remarkable

testing accuracy of 99.7%, highlighting its reliability and
efficacy  in  distinguishing  between  different  stages  of
Alzheimer’s  disease

3.  The  proposed  model  is  evaluated  against  existing
studies and industry-level models, demonstrating superior
performance.  This  novel  classification  approach  shows
considerable potential for enhancing the early detection of
Alzheimer's disease, enabling timely interventions.

2. LITERATURE REVIEW
In  the  past  few  years,  there  has  been  a  remarkable

change  in  the  way  we  diagnose  and  predict  Alzheimer's
disease  (AD),  largely  due  to  the  use  of  cutting-edge
machine  learning  and  deep  learning  methods  [13].  As  a
result,  there  is  now  a  groundbreaking  approach  to
detecting  early  signs  of  AD,  surpassing  previous
conventional  methods.

In the past, traditional methods were the go-to choice
for AD diagnosis among researchers, often relying on CSV
files  for  clinical  data  [14].  However,  newer  studies  have
explored the potential of utilizing other machine learning
techniques. For example, Modupe et al. [15] demonstrated
the  effectiveness  of  the  ResNet18  model  in  accurately
diagnosing AD, achieving impressive results such as high
precision,  recall,  and  F1-scores  when  incorporating  a
dropout rate of 0.2. Similarly, Yingying et al. [16] utilized
an  SVM  to  predict  the  transition  from  Mild  Cognitive
Impairment  (MCI)  to  AD.  These  studies  highlight  the
dynamic  nature  of  AD  diagnosis.

The progress in utilizing MRI images for AD diagnosis
has been remarkable, with researchers employing diverse
deep  learning  structures,  particularly  Convolutional
Neural  Networks  (CNNs),  to  categorize  Alzheimer's
disease  [17].  Achieving  an  accuracy  of  90.6%  in
distinguishing  AD  from  healthy  controls,  this  method
highlights  the  effectiveness  of  attention  mechanisms  in
extracting crucial features, overcoming the limitations of
CSV-based  approaches.  These  innovative  methods
underscore  the  importance  of  extracting  vital  insights
from MRI scans for  Alzheimer's  diagnosis,  proving to be
highly effective and reliable [5].

For example, Liu et al. [18] introduced a multi-modal
deep Convolutional Neural Network (CNN) framework for
accurate hippocampus segmentation and AD classification,
delivering impressive results with high accuracy and Area
Under the Curve (AUC) scores. In another study, Sarraf et
al.  [19]  utilized  the  technique  of  transfer  learning  in
conjunction  with  the  LeNet  architecture,  achieving  a
remarkable accuracy of 96.86% in distinguishing AD cases
from healthy controls. Similarly, Cui et al. [20] employed
the  Inception  V3  model  to  effectively  classify  AD,  Mild
Cognitive  Impairment  (MCI),  and  normal  control  cases
solely  based  on  MRI  images.  Ensemble  methods  have
exhibited great potential in classifying AD. For example, E.
Jabason [21] introduced a diverse ensemble of CNNs, such
as DenseNet architectures, for accurately identifying AD
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using structural MRI data with a remarkable accuracy of
95.23%.  Additionally,  Shahbaz  et  al.  [22]  employed  a
classical  machine  learning  approach,  implementing  the
generalized  linear  model  (GLM)  to  diagnose  AD  with  a
commendable  accuracy  of  88.24%.  These  impressive
results highlight the effectiveness of ensemble techniques
in AD classification.

Our proposed model for classifying Alzheimer's disease
places  great  importance  on  integrating  the  attention
mechanism. This key component allows for detecting and
amplifying  relevant  features  while  disregarding  less
crucial ones. The use of attention mechanisms has proven
to greatly enhance model performance. Extensive research
has  led  to  the  development  of  innovative  attention
mechanisms. These advancements serve as a testament to
the  crucial  role  that  attention  mechanisms  play  in
improving model representation and overall performance
[11, 12, 23].

To  conclude,  the  process  of  diagnosing  Alzheimer's
disease  has  evolved  to  utilize  MRI  scans  and  deep
learning.  This  shift  marks  a  crucial  breakthrough  in  the
field,  as  the  ability  to  detect  AD  early  on  has  greatly
advanced  in  terms  of  precision,  effectiveness,  and
dependability.  These  ongoing  advancements  bring  hope
for early detection and improved care for patients.

Table  1  provides  a  thorough examination  of  multiple

research  endeavors  centered  on  utilizing  neuroimaging
data to diagnose Alzheimer's disease (AD). Recently, there
has  been  special  attention  given  to  using  diverse  deep
learning architectures and machine learning methods [24].
The  initial  study  used  a  refined  ResNet18  model  to  test
seven distinct AD and cognitive state classification tasks.
Despite  efforts  to  mitigate  overfitting,  the  model  still
struggled  with  this  issue.

The  TS-SVM  approach  of  the  second  study,  while
promising  for  identifying  AD  conversion,  suffered  from
bias  in  longitudinal  data.  The  third  study  found  LeNet
CNN  to  be  highly  accurate  but  recommended  exploring
more advanced architectures.  The fourth study achieved
superior  performance  on  the  OASIS  dataset  using  a
combination  of  advanced  deep-learning  techniques.
Conversely,  the  final  study  compared  six  algorithms,
finding that the generalized linear model is best suited for
classifying Alzheimer's stages. This analysis underlines the
value  of  augmented  data  for  specific  classes  to  enhance
overall accuracy.

This  extensive  literature  review has  revealed  several
gaps  in  current  research,  which  encompass  the  issue  of
overfitting,  the  requirement  for  advanced  network
designs,  mitigating  bias  in  longitudinal  data,  and
enhancing  classification  accuracy  via  dataset  augmenta-
tion.

Table 1. Summary of literature review and research gaps.

Refs. Dataset Algorithm Used Contribution Research Gaps

[15]
2022

ADNI fMRI
(138

subjects)
Fine Tuned ResNet18

This study addressed overfitting by fine tuning all convolutional
layers and regularizing with a dropout of 0.2. It compared the
performance of two deep learning models (ResNet18 model

without dropout and with dropout) on seven binary classification
tasks.

Only performed binary classification tasks:
CN vs. AD, CN vs. EMCI, CN vs. LMCI,

EMCI vs. LMCI, EMCI vs. AD, LMCI vs. AD,
and EMCI vs. MCI.

The results of the model showed overfitting
despite using dropout.

[16]
2021 ADNI

Temporally Structured
Support Vector

Machine (TS-SVM)
Model

Their novel analytical method robustly detects AD at time points
6 or 12 months prior to conversion from MCI. By contrast,

performance for predicting conversion drops markedly at 18
months.

This drop in performance is attributed to
inherent bias in the longitudinal data.
Subjects converting to AD after 6-12

months have sufficient follow-up points,
unlike those converting after 18 months.

Their current work only uses single-
modality data to classify MCI converters

from MCI non-converters.

[19]
2016

ADNI - 28
AD patients
and 15 NC
subjects

LeNet CNN framework

This study achieved 96.86% accuracy in classifying AD using
LeNet CNN architecture. Trained on a large dataset, the model
adapts to predict AD stages across ages. Its unique architecture

facilitates feature selection and classification, validating the
chosen network design.

CNNs pose high algorithm complexity and
expensive architecture. The authors

recommend using a more complicated
network architecture with more CNN layers

for further solutions.

[21]
2019 OASIS - 3

Ensemble
of hybrid deep learning

architectures

This paper tested three feature-extraction pipelines using
different MRI views to improve spatial data. Combining these
pipelines with voting on a large dataset (OASIS) yielded high

accuracy, suggesting deeper CNN architectures improve
performance in AD diagnosis.

Plan to test this method on more datasets.

[22]
2019 ADNI

6 ML and data mining
algorithms - including
KNNs, decision tree,
rule induction, Naive
Bayes, generalized

linear model (GLM) and
deep learning

algorithm

The analysis reveals that the generalized linear model excels
among classifiers, achieving an 88.24% accuracy during testing.

Deep learning and Naive Bayes algorithms also perform well,
with accuracies of 78.32% and 74.65%, respectively. Notably, test
results closely align with cross-validation results, indicating that

the models are not overfitting during training.

Enhancing the accuracy of AD stage
classification can be achieved by

augmenting the instances for EMCI and
SMC classes. This approach ensures that
the model is trained with an ample and

balanced dataset across all classes.



4   The Open Neuroimaging Journal, 2024, Vol. 17 Krishnan et al.

2.1. Datasets
There was a successful attempt in the utilization of a

comprehensive  dataset,  representing  and  encompassing
images  representative  of  Alzheimer's  disease  at  varying
stages.  As  mentioned  in  the  introduction,  the  Magnetic
Resonance  Imaging  (MRI)  scans  were  indicative  of  the
general  stages  associated  with  Alzheimer’s  dementia.
These stages can collectively be classified into a general
or  wide  scope  under  either  Cognitively  Normal  (CN  or
Normal  or  Non-Demented)  or  Alzheimer’s  Dementia  (AD
or Demented or Cognitively Abnormal).

Most research in the field of Alzheimer's disease has
heavily  relied  on  two  prominent  datasets:  the  OASIS
dataset  and  the  ADNI  dataset,  both  of  which  have
significantly  contributed  to  our  understanding  of  the
disease.

The  OASIS  (Open  Access  Series  of  Imaging  Studies)
dataset  comprises  multiple  sub-datasets,  with  OASIS-1,
OASIS-2, and OASIS-3 being pivotal components. OASIS-1
primarily includes structural brain MRI data, serving as a
valuable  resource  for  anatomical  analyses  [25]  and
volumetric measurements. OASIS-2 extends this legacy by
adding in-depth clinical  and demographic  information to
the  imaging  data,  facilitating  comprehensive  investi-
gations into the progression of Alzheimer's disease. This
component  essentially  provides  longitudinal  data  of
subjects over time, documenting the disease’s progression
for  future  studies  and  early  prediction  of  the  disease.
OASIS-3  is  one  of  the  more  recent  projects  that  further
bolsters  the  collection  with  a  broader  and  more  diverse
dataset. Besides documenting symptoms over time, it also

deals  with  multi-modal  imaging,  containing  a  variety  of
imaging  sessions,  namely  Magnetic  Resonance  (MR)
sessions,  Positron  Emission  Tomography  (PET)  sessions,
and Computed Tomography (CT) sessions for patients.

In our work, we acquired the “Alzheimer's Dataset (4
classes of Images)” from Kaggle, which comprises a total
of  6,400  images.  These  images  are  meticulously
categorized into four distinct classes, each corresponding
to  different  stages  of  Alzheimer's  disease,  namely:  Very
Mild Demented, Mild Demented, Moderate Demented, and
Non-Demented. Upon further inspection, it  can be noted
that  the  dataset  contains  samples  of  data  from OASIS  1
and OASIS 2, owing to it being T1-weighted MRI data of
the  Axial  plane,  a  characteristic  most  prominently
showcased  by  OASIS  data,  and  containing  the  relevant
slice  of  the  3D  image  that  is  also  included  in  OASIS’s
repositories as well.

A view of  a sample of  data from each class has been
highlighted in Fig. (1).

2.2. Ethical Considerations of Proposed Research
There are certain considerations that need to be kept

in mind while engaging in analysis and research involving
usage of medical data repositories. These are paramount
when  using  human  subject  data  in  research,  even  if  the
data is publicly available and de-identified. Despite efforts
to anonymize data, there's still a risk of re-identification or
revealing sensitive information through data aggregation.
It's crucial to ensure that the data was collected ethically,
with  informed  consent  and  adherence  to  privacy
regulations.

Fig. 1 contd.....
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Fig. (1). Samples of data from each class in the dataset.

In our research, we ensured that the dataset, although
publicly  available,  was  obtained  through  ethically  sound
practices,  including  proper  informed  consent  procedures
and adherence to privacy regulations. We also conducted a
thorough  examination  of  the  anonymization  protocols  in
place  to  safeguard  the  identities  of  the  individuals  whose
data form the basis of our study.

Moreover,  throughout  our  research,  we've  prioritized
transparency  and  accountability.  We've  openly  acknow-
ledged the origin of our dataset, recognizing the individuals
who  contributed  to  it,  and  expressing  gratitude  for  their
invaluable  contribution  to  scientific  advancement.
Additionally, we've implemented robust privacy measures to
prevent any potential misuse or unauthorized access to the
data.

Furthermore,  our  study  design  incorporates  ethical
considerations by focusing on the potential societal benefits
of our research outcomes. We've strived to ensure that our
findings  serve  the  greater  good,  contributing  to  the
understanding and diagnosis of Alzheimer's disease, while
simultaneously minimizing any potential risks or harms to
the individuals involved.

Continuously mindful of the ethical implications of our
work, we've engaged in ongoing ethical oversight, seeking
guidance  from  institutional  review  boards  and  ethics
committees  to  ensure  that  our  research  aligns  with  the
principles of beneficence, non-maleficence, and respect for
persons.  By  upholding  these  ethical  standards,  we aim to
conduct  responsible  research  that  not  only  advances
scientific knowledge but also respects the dignity and rights
of the individuals whose data we utilize.

3. METHODS

3.1. Experimental Setup
The  study  used  6,400  preprocessed  T1-weighted  MRI

pictures  classified  into  Very  Mild  Demented,  Mild
Demented,  Moderate  Demented,  and  Non-Demented
classes. The dataset was obtained from Kaggle, where the
dataset incorporated samples from OASIS 1 and OASIS 2,
presenting  axial  slices  of  3D  images  prominent  in  OASIS
data.  No  means  of  preprocessing  or  data  augmentation
techniques were employed besides model specific rescaling,
this is due to the dataset already being preprocessed to an
extent.

The Convolutional Neural Network (CNN) employed in
this  study  featured  rescaling,  Conv2D  layers  with
increasing filters up to 64, and Spatial Attention layers for
relevant  region  focus.  While  Dropout  layers  reduced
overfitting by randomly deactivating 20% of neurons, Max-
pooling layers shrunk feature maps. Dense layers made it
easier  to  capture  complex  patterns  for  image
categorization, while a flattened layer came before dense
layers  for  compatibility.  The  model  exhibited  robust
feature  extraction  and  decision-making  capabilities
through  its  usage  of  intricate  and  personalized  feature
mapping and specialized activation functions.

3.2. Dataset Splitting
The dataset is further partitioned into training, testing

and  validation  subsets  to  facilitate  the  training  and
evaluation  of  any  proposed  model  but  further  test  our
model,  with  this  segregation  being  done  in  a  specified
seed.
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Table 2. Distribution of images in each class.

Class Image Count

Moderate Demented 64
Mild Demented 896

Very Mild Demented 2240
Non Demented 3200

Table 3. Distribution of images in each class in respective sets.

- Class Image Count

Training

Moderate Demented 51
Mild Demented 716

Very Mild Demented 1792
Non Demented 2560

Validation

Moderate Demented 6
Mild Demented 89

Very Mild Demented 224
Non Demented 320

Test

Moderate Demented 7
Mild Demented 91

Very Mild Demented 224
Non Demented 320

The image ratio in accordance with the classes could
be specified with 3200 Cognitively Normal scans and the
other half of 6400 having very mild to moderate dementia
symptoms. This brought the distribution of the images per
class, as mentioned in Table 2.

3.2.1. Train Test Validation Split
The obtained Dataset was split into training, validation

and  testing  subsets,  with  their  respective  ratio  of  splits
being 0.8, 0.1 and 0.1, and described in Table 3. Fig. (2)
illustrates the difference and effect of their splitting ratios.

Fig. (2). Distribution of all classes in training, validation and test set.
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Table 3 presents a breakdown of image counts across
different classes in a dataset used for the classification of
Alzheimer's  disease.  The  dataset  is  divided  into  three
subsets:  training,  validation,  and  test.  Each  subset  is
further categorized into four classes representing different
stages of dementia: Moderate Demented, Mild Demented,
Very Mild Demented, and Non-Demented. The training set
comprises 51 images of Moderate Demented, 716 images
of Mild Demented, 1792 images of Very Mild Demented,
and 2560 images of Non-Demented cases. The validation
set  includes  6,  89,  224,  and  320  images  for  each
respective class, while the test set consists of 7, 91, 224,
and 320 images.

3.3. Data Preprocessing
Before  undergoing  model  development,  the  dataset

undergoes  several  preprocessing  steps  to  ensure  its
viability for training. Some of the images associated with
the  datasets  are  already  preprocessed  (i.e.  the  Kaggle
dataset  comprising  6400  images  is  all  128  x  128  in
dimensions  with  justifiable  3  channel  dimensions  for
grayscale  images).  Image  normalization  is  applied  to
adjust  the values  of  image pixel  intensity.  It  scales  each
pixel's  intensity  by  a  factor  of  1/255,  ensuring  that  the
pixel values are within the range [0, 1].

In  order  to  improve  the  quality  of  the  images,  we

implemented certain image processing techniques, such as
thresholding  but  they  led  to  a  decrease  in  our  model’s
performance.  Other  techniques  like  filters  and  noise
reduction are not suitable for medical imaging because of
their  predilection  towards  reducing  essential  details
provided in the MRI scans that get removed and otherwise
would  have  contributed  to  the  performance  of  the  CNN
models.

Since  the  amount  of  data  for  medical  imaging,
especially for AD classification, is limited, various research
projects have experimented with incorporating additional
data  augmentation  techniques,  which  can  especially
benefit  the  distribution  of  images  in  the  moderate
demented class containing a lesser amount of samples as
opposed  to  the  other  classes.  Augmentation  techniques
included  manipulating  brightness,  zoom,  and  rotation
range,  alongside  flipping  the  image  to  create  newer
copies. But, we ultimately found that they did not enhance
our proposed model and, in fact, caused a decline in our
results [26].

3.4. Model Training
After performing these crucial preprocessing steps, the

training set is used to train the model, the validation set
for  hyperparameter  tuning,  and  the  test  set  for  model
evaluation.  The  steps  of  proposed  model  training  and
classification  are  illustrated  in  Fig.  (3).

Fig. (3). Proposed architecture.
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3.4.1. Spatial Attention Layer
The Spatial Attention layer operates by computing the

average of each channel within the input feature map. This
average is then run through a sigmoid function, resulting
in a spatial attention map. This spatial attention map is a
matrix of weights that are used to regulate the values of
the input feature map. The resulting attended feature map
is then used by the subsequent layers of the CNN.

The use of the Spatial Attention layer allows the CNN
to  focus  on  the  most  relevant  regions  of  the  brain
associated  with  Alzheimer’s.

Alzheimer's  disease  primarily  manifests  through  the
accumulation  of  abnormal  protein  aggregates,  such  as
amyloid-beta  plaques  and  tau  tangles,  leading  to
widespread  neuronal  damage  and  loss.  Key  regions  of
interest implicated in the data include the hippocampus,
entorhinal cortex, and neocortex, particularly the temporal
and  parietal  lobes.  These  areas  play  crucial  roles  in
memory  formation,  learning,  and  higher-order  cognitive
functions,  all  of  which  are  significantly  affected  as  the
disease progresses.

The spatial  attention layers identify these ridges and

structural  features  within  the  T1  weighted  images  and
attenuate  the  model  in  order  to  assign  more  priority  to
certain  regions,  which  ultimately  helps  with  Alzheimer’s
Disease  classification.  This  is  a  result  of  the  Spatial
Attention  layer  having  the  capability  to  learn  to  assign
higher weights to the regions of the brain that are more
indicative of the disease or can have greater significance
towards  the  disease  characteristics  as  opposed  to  the
other  regions.  As  a  result,  CNN  is  able  to  extract  more
discriminative features from the input brain images.

This  layer  is  incorporated  after  every  Convolution2D
and  MaxPooling  layer,  with  the  initial  layers  being  a
rescaling layer, coming around to a total of three spatial
attention  layer  calls  sequentially.  The  layer  details  are
given  in  Tables  4  and  5.

3.4.2. Convolutional Neural Network
The CNN model  comprises  multiple  layers,  including

convolutional 2D, MaxPooling, Dropout, and dense layers,
with the SpatialAttention layer integrated at key points to
focus  on  relevant  image  regions.  The  illustration  of  the
layers of the CNN Sequential Model is given in Fig. (4).

Fig. (4). Visualization of layers in the CNN sequential model.
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Table 4. Model layers’ details.

Layer Type Output Shape Parameters Explanation

Rescaling Rescaling (None, 128, 128, 3) 0 This layer scales input images by a factor of 1/255 to normalize pixel values
between 0 and 1.

conv2d 2D Convolution Layer (None, 128, 128, 16) 448 Convolutional layer with 16 filters and a 3x3 kernel. Applies spatial filters to
extract features from the input images.

spatial_attention Spatial Attention (None, 128, 128, 16) 0 Spatial attention mechanism to weight different regions of the feature map
adaptively.

max_pooling2d Max Pooling 2D (None, 64, 64, 16) 0 Max-pooling layer with a 2x2 pool size, reducing the spatial dimensions by
half, and retaining the most important features.

conv2d_1 2D Convolution Layer (None, 64, 64, 32) 4,640 Convolutional layer with 32 filters and a 3x3 kernel. Further feature
extraction and transformation.

spatial_attention_1 Spatial Attention (None, 64, 64, 32) 0 Spatial attention applied to the features extracted by the previous
convolutional layer.

max_pooling2d_1 Max Pooling 2D (None, 32, 32, 32) 0 Max-pooling to downsample the feature map again.

dropout Dropout (None, 32, 32, 32) 0 Dropout layer for regularization, randomly setting a fraction of input units to
zero during training.

conv2d_2 2D Convolution Layer (None, 32, 32, 64) 18,496 Another convolutional layer with 64 filters and a 3x3 kernel, increasing the
depth of feature representation.

spatial_attention_2 Spatial Attention (None, 32, 32, 64) 0 Spatial attention applied to the features from the previous convolutional
layer.

max_pooling2d_2 Max Pooling 2D (None, 16, 16, 64) 0 Max-pooling again to further reduce spatial dimensions and capture high-
level features.

dropout_1 Dropout (None, 16, 16, 64) 0 Dropout layer for regularization to prevent overfitting.

flatten Flatten (None, 16,384) 0 Flattens the feature map into a 1D vector for input to the fully connected
layers.

dense Dense (None, 128) 2,097,280 Fully connected layer with 128 neurons, introducing non-linearity and
learning high-level representations.

dense_1 Dense (None, 64) 8,256 Another fully connected layer with 64 neurons, further reducing the
dimensionality of features.

dense_2 Dense (None, 4) 260 Final fully connected layer with 4 neurons, representing the output classes
for Alzheimer's classification.

Table 5. Model architecture details.

Sr. No Name Type Shape

0 rescaling Rescaling (None, 128, 128, 3)
1 conv2d Conv2D (None, 128, 128, 16)
2 spatial_attention SpatialAttention (None, 128, 128, 16)
3 max_pooling2d MaxPooling2D (None, 64, 64, 16)
4 conv2d_1 Conv2D (None, 64, 64, 32)
5 spatial_attention_1 SpatialAttention (None, 64, 64, 32)
6 max_pooling2d_1 MaxPooling2D (None, 32, 32, 32)
7 dropout Dropout (None, 32, 32, 32)
8 conv2d_2 Conv2D (None, 32, 32, 64)
9 spatial_attention_2 SpatialAttention (None, 32, 32, 64)
10 max_pooling2d_2 MaxPooling2D (None, 16, 16, 64)
11 dropout_1 Dropout (None, 16, 16, 64)
12 flatten Flatten (None, 16384)
13 dense Dense (None, 128)
14 dense_1 Dense (None, 64)
15 dense_2 Dense (None, 4)

The  initial  layer  involves  rescaling  the  inputs,
converting and normalizing the pixel values to a range of
[0,1].  The  Conv2D  Layers  involve  a  sequence  of
convolutional  layers,  extracting  features  from  the  input
images.  Initial  layers  have  16  filters,  slowly  doubling  in
every layer to a maximum of 64, which corresponds to the

grid  size  for  every  layer.  After  each  convolutional  layer,
the  Spatial  Attention  layer  is  applied  to  highlight
significant  regions  of  the  feature  maps  (Eq  1).

(1)
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µc is the mean of channel c.
H is the height of the feature map.
W is the width of the feature map.
xc(i, j) is the value of channel c at position (i, j).
Sigmoid function calculates (Eq 2).

(2)

Mathematically,  this  line  performs  element-wise
multiplication between the input tensor and the attention
tensor for each channel c (Eq 3):

(3)

This is returned back to the model.
Where:
y_c(i, j) is the output value for channel c at position (i,

j).
x_c(i, j) is the input value for channel c at position (i, j).
a_c is the attention score for channel c, which scales

the input value.
Max-pooling layers reduce the spatial dimensions of the

feature maps while preserving important features. In a max
pooling (2,2) layer, the feature map is divided into individual
regions or windows of size (2,2) pixels. These windows slide
over the feature map, moving by 2 pixels horizontally and 2
pixels vertically at a time (in this case). Within each window,
the  operation  selects  the  maximum  value.  This  maximum
value represents the most important feature in that specific
window.  The  selected  maximum values  from each  window
are  then  used  to  create  a  new  feature  map  with  reduced
spatial  dimensions.  These  maximum  values  are  then
compiled to construct a new feature map that is half the size
of the original one, both horizontally and vertically.

Dropout  layers  are  employed  after  every  MaxPooling
layer  to  prevent  overfitting  by  randomly  deactivating  a
fraction of neurons during training, which can be specified
in the model. The optimal value selected for our model was
0.2,  which  is  also  a  common  value  taken  in  other  image
classification  projects.  A  dropout  signifies  that  for  each
training  example  and  at  each  training  step,  dropout
randomly “drops out” (or deactivates) 20% of the neurons in
the specified layer.  In other words,  20% of  the neurons in
that layer are set to zero during that training step. This has
an effect similar to ensemble learning.

One of the penultimate layers involves a flattened layer,
which is applied after the last dropout layer and before the
Dense  Layers.  Flattening  in  deep  learning  converts
multidimensional data, like the vectors of images or feature
maps, into a one-dimensional vector. It's crucial for making
this data compatible with fully connected layers and creating
a feature vector for tasks like classification. It also decreases
the  dimensionality  and  size  of  the  original  input  vector  it
processes.

In  the  context  of  classifying  images,  dense  layers  are
used  to  capture  intricate  patterns  and  features  extracted
from  previous  layers,  enabling  the  neural  network  to
understand  and  make  decisions  about  the  content  of  the

images.  They  connect  every  neuron  in  a  layer  to  every
neuron in the subsequent layer, creating a complex web of
connections. This connectivity between the neurons allows
them to  learn and model  intricate  relationships  within  the
image data due to the extensive connections. Each neuron in
a  dense  layer  computes  a  weighted  sum  of  inputs  and
applies  an  activation  function  (commonly  ReLU),  making
them capable of capturing various features and patterns in
the data.

While the first Dense layer contains 128 neurons in its
layers,  the  number  progressively  decreases  to  64  in  the
second layer and a final 4 neurons in the final layer. These 4
neurons mimic  the number of  classes  for  classification for
which a softmax activation function is used.

These layers, as illustrated in Fig. (5), serve as the final
step in the network, using the features to classify the images
into  different  categories,  making  them  crucial  for  image
classification  tasks  .

3.4.3. Activation Functions
The Rectified Linear Unit (ReLU) activation function is

used in two dense layers. ReLU is used in CNN dense layers
because  it  introduces  non-linearity,  aiding  in  learning
complex patterns, particularly for image classification, and
is  computationally  efficient.  It  also  helps  mitigate  the
vanishing gradient  problem, making it  a  popular  choice in
deep  learning.  Subsequently,  the  final  classification  is  4-
class,  i.e.  between  moderate,  mild,  very-mild  and  non-
demented.  The  final  layer  in  the  CNN  network  is  also  a
Dense layer that employs the softmax function, which takes
a set of numerical scores (logits) produced by the previous
layers  and  transforms  them  into  a  probability  distribution
over  multiple  classes.  Each  score  is  exponentiated  and
divided by the sum of all exponentiated scores, ensuring that
the output values sum to 1, which makes them interpretable
as class probabilities. These are mapped to 4 output classes.

4. RESULTS

4.1.  Performance  Evaluation  of  Proposed  Architec-
ture

During  training,  the  model  achieved  a  remarkable
accuracy  of  0.9965  ±  0.003.  By  the  end  of  training,  the
model's loss had reached an impressive minimum of 0.0098,
reflecting its successful optimization. Notably, it seemed to
flatline around the 60th epoch, indicating that the model had
achieved stable convergence.

Moving on to the validation set, the model maintained an
impressive accuracy of 0.9953 ± 0.0016. The validation data
loss,  reflecting  the  generalization  capability  of  the  model,
remained low at 0.0095 ± 0.004.

Our  proposed  model  has  proven  to  be  remarkably
accurate,  demonstrating  its  performance  in  capturing
patterns within the training data and its impressive ability to
generalize  to  new  data.  These  results  serve  as  a  further
testament  to  the  robustness  of  our  model,  showcasing  its
reliability and impressive performance on the validation set.
Fig.  (6a-c)  represents  the  accuracy  and  loss  dynamics  of
both  the  training  and  validation  datasets,  which  can  help
enhance  our  understanding  of  the  proposed  model's
performance.

y_c(i, j) = x_c(i, j) * a_c
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Fig. (5). Workflow diagram.

Fig. (6a). Accuracy and loss curve of training data.
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Fig. (6b). Accuracy curves of training and validation data.

Fig. (6c). Loss curves of training and validation data.

Fig.  (6)  provides  the  accuracy  and  loss.  Fig.  (6a)
showcases  the  comparison  between  the  increasing
accuracy and decreasing loss of the training dataset over
successive  epochs  on  the  x-axis.  Notably,  the  loss  curve
steadily  diminishes,  approaching  nearly  zero  (0.0098),
while the accuracy curve ascends to a near-perfect value,
stabilizing at around 0.9965.

Fig.  (6b)  shows  a  comparison  between  the  accuracy
curves  of  training  and  validation  data,  offering  insights
into how well the model generalizes to unseen instances.
Fig.  (6c)  focuses  on  the  comparison  between  the  loss
curves  of  training  and  validation  data.

But when it came to the testing dataset, an accuracy of
1.0 i.e. 100% was obtained, with a loss on the test dataset
equal to 0.0051. The confusion matrices are shown in Fig.
(7a  and  b)  on  testing  data  and  validation  data.  The
number  of  misclassifications  is  closer  to  zero  in  all  the
classes in the case of testing data. However, in the case of
validation data, there is one misclassification in the case of
non-demented and very_mild_demented classes.

4.1.1. ROC AUC Scores
The  Receiver  Operating  Characteristic  (ROC)  curves

for each class shown in Fig. (8a) reflect a highly effective
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Fig. (7a). Confusion matrix of testing data.

Fig. (7b). Confusion matrix of validation data.
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Fig. (8a). ROC curve for validation dataset.

Fig. (8b). ROC curve for testing data.
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classifier  on  the  validation  test.  With  Area  Under  Curve
(AUC) values close to 1.0, the model demonstrates robust
discriminatory power in distinguishing between different
levels  of  dementia  and  non-demented  cases.  This
performance  underscores  the  model's  reliability  and
accuracy in the classification task for dementia severity.
The  ROC  curve  for  the  testing  set  shown  in  Fig.  (8b)
reveals  a  model  that  performs  at  the  highest  level  of
accuracy for each class, achieving perfect discrimination
between  different  levels  of  dementia  severity  and  non-
demented  cases.  This  outcome  underscores  the  model's
exceptional  reliability  and  effectiveness  in  dementia
classification  on  the  testing  data.

4.2. Comparison with State-of-the-art Techniques
Our research paper provides a thorough evaluation of

different  convolutional  neural  network  (CNN)  structures
for  classifying  Alzheimer's  scans  into  four  specific
categories:  Very  Mild  Demented,  Mild  Demented,
Moderate  Demented,  and  Non-Demented.  The  results  of
our  experiment  present  essential  performance  metrics
such  as  test  accuracy,  sensitivity,  and  specificity,  which
offer crucial insights into the effectiveness of each model.

4.3. Result Reproducibility and Transparency
The aforementioned results were obtained through the

usage  of  specific  dataset  splits  for  training,  testing  and
validation, which involved breaking down the dataset into
a training set, a testing set as well as a validation set, in
the  ratio  0.8:  0.1:  0.1  as  visualized  in  Fig.  (2).  The
segmentation and distribution of images into a particular
set was done so through python’s train test split module.
One  of  the  parameters  in  the  function  involves  a
‘random_state’  variable  which,  when  set  to  a  specific
number,  ensures  reproducibility  of  the  ratio  and
distribution  of  these  images.  With  means  to  the
Convolutional  Neural  Network  model,  the
hyperparameters  were  set  based  on  the  optimal
performance of the model. These hyperparameters include
filters, kernel_size, padding, and activation functions, all
of which can be reproduced based on the specific model
setup required.

5. DISCUSSION
Table  6  consists  of  a  thorough  comparison  between

our  results  and  those  of  other  widely  used  pre-trained
models that apply the transfer learning strategy [26]. We
specifically  contrasted  our  approach  with  popular
architectures  such  as  VGG16,  ResNet50,  Inception  V3,

EfficientNetB7, and DenseNet121, which were all utilized
after being pre-trained on the ImageNet dataset. With an
impressive  test  accuracy  of  96.39%,  VGG16  firmly
establishes its robustness in detecting complex patterns in
scans. DenseNet121 follows closely with a commendable
test  accuracy  of  96.29%.  Despite  having  a  lower  test
accuracy  of  89.85% and 87.71%,  respectively,  ResNet50
and  InceptionV3  excel  with  perfect  sensitivity  and
specificity, making them highly effective models. Another
work that utilizes shallow Convolutional Neural Network
exhibits  an  impressive  99.68%  accuracy,  coupled  with
perfect  sensitivity  and  specificity.  These  findings  truly
emphasize  the  effectiveness  of  this  approach.

5.1. Unique Contributions and Practical Implications
Our study aims to improve the precision of identifying

Alzheimer's  disease  by  incorporating  a  spatial  attention
mechanism  into  a  sequential  CNN  model.  This  stands
apart  from  conventional  models  that  lack  this  critical
element.  Our  innovative  methodology  has  shown
significant  success,  surpassing  the  effectiveness  of
traditional  models  in  key  metrics  such  as  test  accuracy,
sensitivity,  and  specificity  –  achieving  a  perfect  test
accuracy,  as  well  as  sensitivity  and  specificity  of  100%.
Our  proposed  algorithm  boasts  an  impressive  novel
feature:  the  inclusion  of  a  spatial  attention  mechanism.
This proved to be a highly effective and promising strategy
for  enhancing  the  classification  of  Alzheimer's  disease.
Our  study  not  only  evaluates  well-established  CNN
architectures  but  also  represents  a  testament  to  an
innovative and intuitive approach. By incorporating spatial
attention mechanisms, we have made significant progress
in  the  realm  of  Alzheimer's  diagnosis  through  image
classification.  The  impressive  results  of  our  algorithm
serve as a reminder of the crucial role spatial relationships
play  in  medical  image  analysis  [25],  especially  in  the
context  of  neurodegenerative  diseases.

The  practical  implications  of  our  research  are
significant.  Our  algorithm has  demonstrated  remarkable
accuracy,  sensitivity,  and  specificity,  indicating  its
potential for practical use in clinical settings. By utilizing
this  enhanced  performance,  medical  professionals  can
greatly  benefit  in  accurately  and  efficiently  diagnosing
Alzheimer's  disease  through  neuroimaging  data  [27].
Furthermore,  the  incorporation  of  spatial  attention
mechanisms  presents  exciting  opportunities  for  future
advancements  and  exploration  in  the  field  of  medical
image  analysis.

Table 6. Comparison with existing works.

Ref. Title Test Accuracy Sensitivity Specificity

[26]
2023

VGG16 96.39 99.29 100
DenseNet121 96.29 100 100

ResNet50 89.85 100 100
InceptionV3 87.71 99.12 100

An MRI-based deep learning approach for accurate detection of Alzheimer’s disease 99.68 100 100
- Proposed Model 100 100 100
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In conclusion, our study not only evaluates established
CNN  architectures,  but  also  introduces  an  intuitive
approach  that  surpasses  the  performance  of  traditional
models.  The  addition  of  spatial  attention  mechanisms  in
our algorithm makes a notable contribution to the field of
Alzheimer's diagnosis through image classification.

5.2. Limitations
The spatial attention layer operates by computing a set

of operations on the average pixel values of each channel,
following  which  it  undergoes  several  other  transfor-
mations through functionsun through a sigmoid function,
resulting in a spatial attention map. This spatial attention
map is a matrix of weights that are used to regulate the
values  of  the  input  feature  map.  The  resulting  attended
feature map is then used by the subsequent layers of the
CNN.

This  set  of  operations  remains  uniform  for  every
passed input. So far, the utilized data comprises 6400 test
subjects to which our model has generalized adequately,
taking into account specific regions which may hold higher
propensity towards Alzheimer’s stage detection.

This can help only when being used on the same form of
imaging as utilized in our model training, i.e. T1 weighted
Brain MRI of the axial plane. However, in order to achieve
our  future  scope  of  being  able  to  map  out  progressive
classification over time for Alzheimer’s patients, the model
would be required to be trained using MRI training images
for patients over time, for which the current model is not
able to generalize available data.

6. FUTURE SCOPE
Future  efforts  on  this  subject  have  a  plethora  of

potential, especially in terms of advancing the detection and
classification  of  Alzheimer's  disease.  A  particularly
interesting  direction  for  future  research  is  to  add  T2-
weighted MRI scans to the existing T1-weighted scans. This
feature  makes  use  of  the  additional  data  provided  by  T2-
weighted  imaging  in  an  effort  to  reveal  a  more  complex
understanding of the structure of the brain. Using MRI in
conjunction with other imaging modalities, such as PET and
CT scans, increases the possibility of identifying Alzheimer's
disease  early  on.  Accurate  and  precise  results  are  more
likely  when  metabolic  and  structural  data  from  different
imaging modalities are integrated. Moreover, by switching
from  conventional  2D  slices  to  sophisticated  3D  MRI
pictures,  the model can now record a complete picture of
the  brain.  This  evolution  may  capture  complex  spatial
correlations  and  enhance  the  model's  capability  to  detect
the smallest irregularities [28].

CONCLUSION
Deep learning algorithms play a pivotal role in today’s

medical  applications,  ushering  into  an  era  marked  by  AI-
assisted  healthcare.  With  its  unique  propensity  to
understanding and being able to segment MRIs, PETs and
other  medical  scans,  their  use  in  the  classification  of
maladies  and  diseases  offer  enthusiastic  and  unpre-
cedented  accuracy  and efficiency,  thereby  revolutionizing
disease diagnosis and patient care.

Our  study  on  Alzheimer's  classification,  employing  a
spatial  attention-based  convolutional  neural  network,
obtained a testing accuracy of 99.68%. This indicates the
model's  robustness  in  accurately  distinguishing between
very mild, mild, moderate, and non-demented stages of the
disease. The incorporation of spatial attention mechanisms
enhances the model's sensitivity to subtle spatial patterns,
emphasizing more prevalent and susceptible regions in the
MRI,  contributing  to  its  high  accuracy.  The  evaluation
metrics, including precision, recall, and F1 score, further
underscore the model's reliability. Beyond its exceptional
performance,  our  proposed  approach  holds  promise  for
early detection and intervention, offering a valuable tool
for  healthcare  professionals.  The  reported  testing
accuracy  reflects  not  only  the  model's  predictive  power
but  also  its  potential  clinical  applicability,  marking  a
significant  stride  in  Alzheimer's  disease  classification.
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