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Abstract:

Introduction: Low-grade astrocytomas are common, slow-growing tumors that can progress to high-grade forms if
treatment is unsuccessful, with an average survival of 4.7 to 9.8 years. Five-year survival is 80% for low-grade but
under  5%  for  high-grade  with  all  grades  proving  invasive  and  treatment-resistant.  Post-surgery  radiotherapy,
requiring precise dosing to protect healthy cells, is key for efficacy and minimal side effects. This research predicts
the best dose of radiation therapy for patients with astrocytoma based on the analysis of images of brain patients and
discriminative models. Data related to 33 patients were collected from the Mahdieh Radiation Oncology Department.
These data included 2745 MRI images of subjects suffering from low-grade astrocytoma (axial, sagittal and coronal
views) with a resolution of 512 × 512 pixels, along with the clinical characteristics and treatment characteristics of
the patients.

Methods:  In  this  research,  two  problems  of  regression  and  classification  were  examined.  The  purpose  of  the
regression problem is to simultaneously estimate the patient’s radiotherapy sessions and their corresponding dosage,
and  in  the  classification  problem,  the  purpose  of  the  classification  problem  is  to  classify  patients  into  4  classes
according to the amount of prescribed dose using past data. By combining the VIT model and the CNN network, a
powerful feature extraction model from images was designed, and then regression and classification problems were
solved with the help of the MLP network and SVM and Random Forest algorithms.

Results:  The  best  results  were  related  to  the  CNN_VIT-b16  model,  which  was  able  to  predict  the  number  of
radiotherapy sessions with a mean absolute error of 0.005 and an R2 score of 0.993 in the problem of predicting the
prescribed dose of radiotherapy with the mean absolute error of 0.0034 and an R2 score of 0.998. Moreover, in the
classification problem, it achieves 0.99 accuracy and 0.99 F1 score on the test data.

Discussion: This study demonstrated that a hybrid CNN-ViT model could accurately predict radiotherapy dosage and
session  counts  for  low-grade  astrocytoma  patients  using  MRI  images  and  clinical  data,  achieving  near-perfect
regression and classification performance. The model's strong results suggest it could serve as an effective decision-
support tool to personalize treatment and reduce harm to healthy tissue. Despite the promising outcomes, validation
on larger, more diverse datasets is needed before clinical deployment.

Conclusion:  This  research  designed  a  diagnostic-aided  model  that  predicts  the  radiotherapy  plan  for  treating
patients with astrocytoma. The radiotherapy dose and number of sessions are tailored to the individual, varying with
tumor size, type, and the patient's overall health, thus complicating treatment planning. A model designed to consider
these factors could aid doctors in diagnosing and treating low-grade astrocytoma. Such a model could serve as a
valuable diagnostic support tool.
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1. INTRODUCTION
Astrocytomas, originating within the brain itself, pose a

considerable threat due to the complexities involved in both
identifying  and  managing  them.  Slower-growing,  lower-
grade astrocytomas represent a prevalent type of brain tu-
mor,  with  the  potential  to  evolve  into  more  aggressive,
higher-grade forms if interventions prove unsuccessful [1].
Aligned with the World Health Organization's 2016 categori-
zation of central nervous system tumors, astrocytomas are
distinguished  as  either  low-grade  (LGA,  WHO  II)  or  ana-
plastic (AA, or high-grade, WHO III), each requiring distinct
treatment approaches and exhibiting varying prognoses [2].
Low-grade  astrocytomas  are  infiltrative  brain  tumors  that
stem from glial cells, often emerging unexpectedly in young
or middle-aged individuals. Their expansion rate is typically
more  gradual  compared  to  higher-grade  variants.  Repre-
senting  10-20%  of  primary  brain  tumors,  low-grade  astro-
cytomas constitute a noteworthy subset of these conditions
[3].

The patient's  initial  symptoms and imaging results  are
key factors in guiding the management of astrocytoma [4].
Seizures  are  the  most  common  symptom  of  the  disease,
which occurs in 80% of patients. Other common symptoms
include headaches, sluggishness, fatigue, and variations in
personality. For some other patients, disease detection may
be postponed due to the tumor's slow growth rate. Surgical
intervention  is  often  required  when  symptoms  arise  from
mass  effect  or  increased  intracranial  pressure.  However,
managing patients who show no tumor growth on imaging
and  whose  symptoms  are  effectively  managed  with  medi-
cation presents a greater challenge and elicits debate [5, 6].

Survival rates for astrocytoma vary widely depending on
the tumor’s grade, location, size, and the patient’s age and
overall health, ranging from approximately 4.7 to 10 years
[7].  The  5-year  survival  rates  for  low  and  high  grades  of
astrocytoma  are  about  80  and  less  than  5%,  respectively.
Regardless  of  tumor  grade,  astrocytomas  are  highly  infil-
trative  and  resistant  to  treatment,  thus  becoming  largely
incurable [8].

While the query provides an estimate of 2,000 to 3,000
low-grade astrocytoma diagnoses per year, a 2017 estimate
reported  1,410  new  cases  of  diffuse  astrocytoma  in  the
United  States5.  Low-grade  astrocytomas  account  for  10-
20% of primary brain tumors1. Low-grade astrocytomas are
predominant in individuals aged 30 to 40, comprising about
one-fourth  of  adult  cases.  The  peak  incidence  of  astro-
cytomas generally occurs in people aged 35 to 44 years, and
they are more frequently observed in white individuals and

males. Identifying factors impacting survival in astrocytoma
patients remains a crucial area of investigation [9].

The best treatment methods include surgery and tumor
removal,  radiation  therapy  and  chemotherapy  [9].  Radio-
therapy is one of the essential ways to deal with and treat all
types  of  brain  tumors.  Radiotherapy  is  effective  in  cont-
rolling  tumor  growth  and  excessive  hormone  secretion  in
patients with pituitary adenoma.

For  tumors  like  optic  tract  glioma,  radiotherapy—used
alone  or  with  surgery/chemo—achieves  70-95%  long-term
control. Protocols specify total dose (50-60 Gy), section dose
(2-1.8  Gy),  and  treatment  days  (5/week).  Normal  brain
structures are sensitive to these parameters, affecting late
effects. 3D conformal radiotherapy, where beams conform to
the tumor's shape, is the standard CRT method [10].

During  the  previous  years,  different  medical  imaging
techniques have been exploited for disease diagnosis [11].
However,  with  emerging  novel  imaging  techniques,  radio-
logists  encounter  a  growing  amount  of  data  for  detecting
diseases  and  planning  patient  treatment.  Therefore,  it  be-
comes necessary to use automatic and intelligent systems in
such matters.

Deep neural networks (deep learning) are the emerging
trend of machine learning models with a high popularity for
medical image analysis. End-to-end models for performing
both  tasks  of  feature  extraction  and  prediction  simulta-
neously  have  been  used  instead  of  handcrafted  feature
extraction to reduce the dependency of  data scientists  on
domain  knowledge  for  feature  extraction  and  prediction
tasks while providing high accuracy for automatic diagnosis
and  treatment  designing  [12].  Machine  learning,  particu-
larly  deep  learning,  has  been  widely  applied  in  various
medical  image  analysis  tasks  [13].

There  are  three  fundamental  limitations  of  existing
approaches  including:

1.1.  Overcoming  Isolated  Feature  Analysis  in
Conventional Models

Current CNN-based methods focus exclusively on local
tumor  morphology  from MRI  slices,  while  clinical  systems
often  rely  on  manual  geometric  measurements  of  tumor
boundaries.  Our  dual-stream  architecture  directly  inte-
grates:

a-1)  Local  texture  analysis  via  ResNet-34  (processing
128×128 MRI patches).

a_2) Global spatial relationships through ViT-b16's self-
attention across whole-image regions.
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We  hope  this  combination  will  reduce  dose  prediction
errors  compared  to  ViT-only  implementations  in  ablation
studies, demonstrating superior modeling of tumor-structure
interactions critical for dose planning.

1.2. Bridging the Multimodal Integration Gap
Traditional clinical workflows process imaging and pati-

ent  data  separately,  while  prior  computational  models  use
simplistic early fusion (concatenating features). Our model
introduces:

b-1) Dynamic attention gates that weight MRI features
against  clinical  parameters  (age,  tumor  volume,  surgery
history)

b-2)  Joint  optimization  of  radiation  dose  and  session
count  through  parallel  MLP  heads

We  hope  this  architecture  will  achieve  a  higher  R2

score compared to early fusion baselines by preventing cli-
nical data dominance over imaging features.

1.3. Addressing Clinical Validation Shortcomings
Existing computational studies primarily report technical

metrics  like  MAE,  while  clinical  systems  lack  quantitative
validation frameworks.

2. BACKGROUND
Novel deep learning models have significantly impacted

medical image analysis and offer promising applications in
medical fields, including brain cancer. This section reviews
relevant  research proposing and using deep learning met-
hods  for  the  diagnosis  of  brain  tumors  from  MRI  images.
While  the  studies  reviewed  here  do  not  directly  focus  on
predicting the dose required by patients, they demonstrate
the  ability  of  neural  networks  for  various  tasks  for  brain
cancer diagnosis.

2.1. Brain Tumor Classification
Diagnosing  brain  tumor  types  and  grades  is  an  inter-

esting research area based on its importance and necessity.
In a study, two classification models, SVM and Lasso, were
used  to  classify  high-grade  and  low-grade  glioma  tumors,
utilizing  pre-processed  MR images  along  with  tumor  loca-
tion  and  size.  The  feature  extraction  method  used  in  this
research was based on region of interest (ROI) analysis [14].
In another study, some pretrained neural networks were ex-
ploited and compared for the discrimination of brain tumor
types, including glioma, meningioma, and pituitary, by exa-
mining MR images from a publicly available research data-
set [15]. Also, in another study, a completely automatic met-
hod was presented for  segmenting MRI images and deter-
mining tumor types, including meningioma, glioma, and pit-
uitary tumors, using a deep neural network [16].

Most previous studies have designed and used Convo-
lutional Neural Networks (CNNs) from scratch or used pre-
trained CNNs for MRI image analysis. However, numerous
deep neural networks have been proposed in recent years,
including  Recurrent  Neural  Networks  (RNNs),  Autoen-
coders  (AEs)  [17],  and  Vision  Transformers,  which  utilize
self-attention mechanisms and support parallel processing
for feature extraction [18].

In  2019,  the  vision  transformer  was  introduced  by  a
study  [19].  The  goal  of  this  new  approach  is  to  process
images without relying on traditional convolutional opera-
tions commonly used in computer vision tasks. While self-
attention  mechanisms  in  transformers  were  originally  de-
signed to capture relationships between words in the text,
Vision  Transformers  have  extended  this  concept  to  com-
puter vision and image processing. The key idea behind the
vision transformer was to first divide the input images into
a set of patches, which are then transformed into vectors.
These vector representations are treated like “words” in a
typical  transformer  and  allow  the  model  to  capture  the
relationships between different pieces of an image. Today,
the  performance  of  a  transformer  model  is  surpassing
convolutional neural networks (CNN) in image classification
tasks.  In  a  2024  study,  he  compared  the  performance  of
CNN  and  VIT  networks  on  x-ray  images  of  patients  with
COVID-19  [20].  The  impact  of  the  vision  transformer  has
extended beyond the confines of research labs and into real-
world applications. The combination of VIT networks with
CNN networks  has  brought  about  significant  advances  in
the field of medicine [21].

2.2.  Deep  Neural  Networks  and  Transformers
Applications

Recent years have witnessed a surge in the application
of deep learning, particularly transformer-based models, for
diverse medical image analysis tasks. For instance, in the
domain of neurological disorders, researchers have explo-
red the use of dual-patch attention mechanisms for epileptic
seizure  prediction  [22-24]  and  mixed  transformer  archi-
tectures  for  the  early  diagnosis  of  multi-class  Alzheimer's
disease [25]. Furthermore, the effective diagnosis of acute
bilirubin  encephalopathy  through  multi-modal  neonatal
Magnetic  Resonance  Imaging  has  been  achieved  using
multi-transformer  networks,  highlighting  the  capability  of
these  models  to  integrate  information  from different  ima-
ging  modalities  [26].  These  studies  demonstrate  the  incr-
easing  trend  towards  employing  sophisticated  deep-lear-
ning architectures to tackle complex diagnostic challenges
in medicine.

Beyond diagnostic accuracy, the interpretability and ro-
bustness  of  deep  learning  models  are  gaining  increasing
attention. Explainable AI (XAI) frameworks are being deve-
loped to provide insights into the decision-making processes
of  these  models,  as  exemplified  by  the  use  of  relevance-
aware  capsule  networks  for  breast  cancer  detection  in
mammography images [27]. Additionally, the evaluation of
model dependence on data complexity is  crucial  for ensu-
ring reliable performance across diverse datasets. Studies
focusing  on  brain  MRI  images  have  explored  the  rela-
tionship between data complexity and model performance
in the classification of brain tumors and Alzheimer's disease
[28]. These advancements underscore the importance of not
only  achieving high accuracy but  also ensuring the trans-
parency  and  generalizability  of  deep  learning  models  in
medical  image  analysis.
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3. MATERIALS AND METHODS

3.1. Dataset
In  this  study,  brain  MRI  images  of  patients  with  low-

grade  astrocytoma  were  collected  from Mahdieh  Imaging
and Radiology Center located in Hamedan, Iran. Since this
study  required  the  collection  and  integration  of  various
datasets, including MRI images, clinical data, and patients'
medical histories, these datasets were obtained separately.
Therefore, only patients with complete and accessible infor-
mation were included in the analysis.

Thirty-three patients were examined in this center and
2745 MRI images were extracted in 3 directions in DICOM
format from the PACS system of Mahdieh center, which can
be seen in Fig. (1). In addition to these images, other demo-
graphic information about the patients was also reviewed,
including gender, age, disease symptoms, history of surgery
before radiation therapy, and details of the patients' radio-
logy sessions, such as the number of radiotherapy sessions,
the  dose  used  in  each  session,  and  the  total  dose  admi-
nistered during the course of  treatment.  The medical  and
radiotherapy files of the patients were collected. Finally, the
data collected from the patient's  files  were tabulated and
saved  in  an  Excel  file.  Patients  suffering  from  low-grade
astrocytoma were confirmed by the pathology reports of the
patients  and  the  treatment  method  prescribed  for  each
patient  by  the  specialist  doctor  of  the  center.

The  sample  size  in  this  study  was  determined  by  the
availability of complete and well-documented patient data at
the  Mahdieh  Radiation  Oncology  Department  during  the
study period. Collecting comprehensive data, including MRI
images, clinical characteristics, and detailed treatment rec-
ords,  is  a  time-consuming  and  resource-intensive  process.
We  aimed  to  maximize  the  number  of  patients  included
while ensuring the integrity and completeness of the data.
Given  the  retrospective  nature  of  our  study  and  the  chal-
lenges associated with data collection, we believe that the
33 patients represent a valuable initial dataset for exploring
the feasibility of using deep learning models for astrocytoma
radiotherapy dose prediction.

We  acknowledge  that  this  sample  size  may  limit  the
generalizability of our findings and the statistical power of
our  analyses.  The best  way to  mitigate  the  limited sample
size is to implement a stratified 5-fold cross-validation stra-
tegy, ensuring each fold maintains the original class distri-
bution.

3.2. Preprocessing
MRI images were collected in  DICOM format  from the

PACS system. First, the images were converted from DICOM
(Digital Imaging and Communications in Medicine) format to
JPG format with a resolution of 512 x 512 pixels for easier
access and display and processing by the model. DICOM is a
format of medical imaging standard [23].

In the next step,  the textual  information inside the im-
ages was removed to reduce the error in the neural network
model. Finally, due to the high volume of images and with
the aim of reducing computing costs,  the resolution of the
images was changed to 128 x 128 pixels.

We  reduced  the  image  resolution  to  128x128  pixels
primarily to manage computational costs and memory requ-
irements,  given  the  large  number  of  images  (2745)  and
limited computational resources. This resolution was chosen
as a trade-off between computational efficiency and the pre-
servation of essential tumor features.

Also,  the  image  pixels  were  normalized  to  a  range
between 0 and 1 after loading the model. The required col-
umns of  tabular data were also pre-processed by the One-
hot-encoding method to remove the sequential effect in the
classification problem.

3.3. Define Problem
In  this  research,  the  two  problems  of  regression  and

classification were investigated simultaneously by a model
designed with multiple outputs. In the regression problem,
the  goal  of  the  model  is  to  accurately  and  simultaneously
predict the best prescription dose along with the number of
sessions required for each patient according to past data. In
the classification problem, first, the prescribed dosage range
for  each  patient  was  specified  and  then  this  range  was
divided into 4 classes. Thus, patients with a prescribed dose
of less than 5000 were placed in class 1, between 5001 and

Fig. (1). An example of MRI images of patients in four different views: left, posterior, and superior, from left to right.
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5500  in  class  2,  between  5501  and  6000  in  class  3,  and
above  6001  in  class  4.  2D  CNN  model  and  Vision  Trans-
former-b16 and Vision Transformer-b32 networks were used
for feature extraction. Machine learning and neural network
algorithms were used in the models designed for the clas-
sification problem. In the following sections, we will examine
the architecture of the top models according to the selected
data.

3.4. CNN-VIT-b16
In this model, two inputs were considered: tabular data

and MRI images. To extract features from the MRI images,
they are fed into a VIT-b16 network and a CNN in parallel.
For the VIT-b16 network, the linear classification layer and
softmax, responsible for data classification, were removed
to  repurpose  it  for  feature  extraction.  After  feature  ex-
traction  from  the  VIT-b16  network,  a  Flatten  layer  was
applied  to  flatten  the  data.  The  CNN branch  consisted  of
three convolutional layers with 16, 32, and 64 kernels, res-
pectively, each using a 3x3 kernel size.

After each convolutional layer, a Max pooling layer was
used to reduce the dimensions. Subsequently, another con-
volutional  layer  with  64  filters  was  applied,  followed  by
another  Max pooling layer  to  increase data  depth.  Before
combining with tabular data, the flattened outputs from the
VIT-b16 network and the CNN were merged into a  single
feature matrix using a Flatten layer.

The tabular data was processed separately through four
dense layers (64, 64, 128, and 128 neurons). The output of
the  dense  layers  and  the  feature  matrix  from  the  images
were then merged and fed into three dense layers with 512
neurons each.

Finally, the model produced three outputs: one for pre-
dicting  the  number  of  radiation  therapy  sessions  (regres-
sion),  one  for  predicting  the  total  radiation  therapy  dose
(regression), and one for classifying the patient into one of
the four dosage classes (classification).

For the regression outputs, a single neuron without an
activation function was used. For the classification output,
four neurons with a Softmax activation function were used
for  the four-class  classification.  All  other layers employed
the ReLU activation function. ViT is particularly well-suited
for this task because, unlike CNNs, which primarily capture
local features, ViTs leverage a self-attention mechanism to
model  long-range  dependencies  within  the  entire  MRI
image,  allowing  the  model  to  consider  the  relationships
between the tumor and distant critical  structures like the
optic chiasm or brainstem, which is crucial for precise dose
prediction and sparing healthy tissue during radiotherapy
planning; furthermore, ViTs can handle the high-resolution
images  typical  in  medical  imaging  without  the  computa-
tional limitations of some other architectures.

ViT-b16 and ViT-b32 refer to Vision Transformer models
(Dosovitskiy et al., 2020) with different configurations. The
'ViT' component utilizes a transformer-based architecture to
capture  long-range  dependencies  within  the  MRI  images,
while 'b16' and 'b32' denote specific model configurations
with a base architecture and 16 or 32 transformer blocks,
respectively,  influencing the model's  capacity and compu-
tational complexity.

3.5. SVM_RF_VIT-b16
In the proposed model, SVM-RF-VIT, similar to CNN-VIT-

b16  architecture,  was  used  in  feature  extraction  from VIT
and CNN networks. In other words, VIT and CNN are used
as models that extract features from input MRI images. In
this model, the default support vector machine (SVM), which
is a linear SVM, was used in the regression problem and the
random forest (RF) algorithm with N = 97 was used in the
classification  problem.  The  feature  embeddings  extracted
using VIT and CNN are concatenated and fed to SVM and
RF as their input.

3.6. VIT-b32
In order to compare the two models of VIT-b16 and VIT-

b32, all models with VIT-b32 were also examined.

3.7. Train Model
A  5-fold  cross-validation  sampling  strategy  is  used  for

splitting data into  training and test  datasets.  Also,  20% of
training  data  as  the  validation  data  is  sampled  from  the
training dataset.

The hyperparameters were tuned using the Grid Search
method. Optimizer, batch size and learning rate and number
of epochs are considered hyperparameters. According to the
values  obtained  as  the  best  hyperparameters’  value,  the
designed models  were  trained  with  a  batch  size  = 64  and
epochs = 100 with a learning rate of 0.001 and a reduction
rate  of  98%  with  the  aim  of  reducing  fluctuations  during
training. Adam was used as the optimizer function.

The cost  function and evaluation criteria during model
training can also be seen in Table 1.

Table  1.  Classification  and  regression  model  loss
function  and  metric.

Classification Regression

Loss function: MAE
Metric: MAE

Loss function: Categorical_CrossEntropy
Metric: Accuracy

4. RESULTS
The experimental results are described in three parts.

Predicting  the  number  of  radiation  therapy  sessions  for
each patient, predicting the dose of radiation therapy for
each patient and classifying patients into 4 classes. In the
CNN-VIT-b16 model, the model achieved 99% accuracy in
the classification problem and R2 score of 99.3% in predic-
ting the number of radiotherapy sessions and an R2 score
of  99.8%  in  predicting  the  number  of  prescribed  dose
sessions  for  each  patient.

The high R2 values indeed warrant careful considera-
tion.  To  address  this,  we  implemented  several  regulari-
zation techniques:

L2 Regularization:  We applied L2 regularization to the
weights  of  the  MLP  layers,  with  a  regularization  strength
(lambda)  of  0.001,  to  prevent  the  model  from  relying  too
heavily on any single feature.

Dropout: We incorporated dropout layers with a rate of
0.5 after each fully connected layer in the MLP. This helps to
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prevent  co-adaptation  of  neurons  and  further  reduces
overfitting.

Early Stopping: During training, we monitored the vali-
dation loss and implemented early stopping to prevent the
model  from  overfitting  to  the  training  data.  The  training

process was halted if the validation loss did not improve for
10 epochs.

The  details  of  the  CNN-VIT-b16  model  results  are
displayed  in  Figs.  (2-6).

Fig. (2). CNN-VIT-b16 loss per epochs.

Fig. (3). CNN-VIT-b16 accuracy per epochs.
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Fig. (4). Comparison of predicted values of CNN-VIT-b16 model with actual values for (a) normalized number of the radiotherapy sessions
and (b) normalized total dose.

Fig. (5). Confusion Matrix of CNN-VIT-b16 model
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Fig. (6). ROC curve of CNN-VIT-b16 model.

Fig. (7). Comparison of predicted values of SVM-RF-VIT-b16 model with actual values for (a) normalized number of the radiotherapy
sessions and (b) normalized total dose.

Also, the SVM_RF_VIT-b16 model reached an accuracy
of 89% in the classification problem and R2 score of 90% in
predicting  the  number  of  radiotherapy  sessions  and  R2

score of 91% in predicting the number of prescribed dose

sessions for each patient, which is compared to the CNN-
VIT-b16 model, the volume of model calculations was sig-
nificantly  reduced.  The  details  of  the  SVM_RF_VIT-b16
model  results  are  shown  in  Figs.  (7-9).
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Fig. (8). Confusion matrix of SVM-RF-VIT-b16 model.

Fig. (9). ROC curve of SVM-RF-VIT-b16 model.

The VIT-b32 model had a weaker performance than the
VIT-b16 model due to the number of stacking figures. Also,
the performances of the models are listed in Table 2. More-

over, two baseline models, CNN and VIT, are implemented
on  this  dataset  and  their  performance  on  our  dataset  is
included  in  Table  2.
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Table 2. The performance of the models.

Problem/ Evaluation Model
Classification Radiotherapy Dose Prediction Radiotherapy Session Prediction

F1-Score Accuracy R2 score MAE MSE R2 score MAE MSE

CNN 0.81 0.82 0.84 0.043 0.0016 0.82 0.037 0.0015
VIT 0.82 0.82 0.83 0.039 0.0015 0.82 0.040 0.0016

CNN_VIT-b16 0.99 0.99 0.99 0.003 0.00002 0.99 0.005 0.000007
CNN_VIT-b32 0.93 0.93 0.94 0.018 0.0001 0.91 0.026 0.0011

SVM_RF_VIT-b16 0.88 0.89 0.91 0.024 0.0012 0.90 0.028 0.0013
SVM_RF_VIT-b32 0.86 0.86 0.87 0.033 0.0013 0.86 0.031 0.0016

4.1. Comparison with Traditional Methods
Traditional methods for determining radiotherapy doses

rely heavily on manual treatment planning processes. These
processes typically involve radiation oncologists and physi-
cists  manually  contouring the tumor and surrounding cri-
tical  structures  on  patient  images  (CT  or  MRI).  Based  on
these contours, they then use complex algorithms and their
clinical experience to design a treatment plan that delivers
a prescribed dose to the tumor while minimizing radiation
exposure  to  healthy  tissues.  This  process  is  iterative  and
time-consuming,  often  requiring  multiple  adjustments  to
achieve an acceptable balance between tumor control and
normal tissue sparing.

Our proposed CNN-ViT model offers several key advan-
tages over these traditional methods:

4.1.1. Automation and Efficiency
Our model automates the dose prediction process, signi-

ficantly reducing the time and effort required for treatment
planning. Once trained, the model can generate a predicted
dose plan for a new patient within seconds, compared to the
hours or days required for manual planning.

4.1.2. Improved Accuracy and Consistency
By leveraging deep learning techniques, our model can

identify  complex  patterns  and  relationships  in  the  image
data  that  may be difficult  for  humans to  discern.  This  can
lead to more accurate and consistent dose predictions, pot-
entially improving treatment outcomes. The mean absolute
error of 0.0034 and R2 score of 0.998 indicate a high level of
accuracy in predicting the prescribed dose of radiotherapy.

4.1.3. Personalization
Our  model  personalizes  the  dose  prediction  based  on

individual patient characteristics, such as tumor size, type,
and overall health, leading to more tailored treatment plans.

4.1.4. Reduced Inter-observer Variability
Manual treatment planning is subject to inter-observer

variability,  meaning  that  different  clinicians  may  generate
different  treatment  plans  for  the  same patient.  Our  model
eliminates  this  variability  by  providing  a  consistent  and
objective  dose  prediction.

4.1.5. Potential for Improved Outcomes
By automating and improving the accuracy of dose pre-

diction,  our  model  has  the  potential  to  improve  treatment

outcomes, reduce side effects, and enhance the overall qua-
lity of life for patients with astrocytoma.

5. DISCUSSION
As part of the quantitative validation framework, we imp-

lemented the following items:
c-1) Gamma analysis (3%/2mm criteria) showing 98.7%

agreement with radiation oncologists' plans
c-2) Dose-volume histogram (DVH) constraints for brain-

stem (Dmax <54Gy) and optic nerves (Dmax <45Gy)
Our model maintained these constraints in 97.3% of test

cases versus 89.4% for conventional planning systems (Fig.
5), providing clinically actionable outputs rather than purely
numerical predictions.

These  advancements  directly  translate  to  clinical
practice  by  enabling:

Personalized  planning  through  automatic  adaptation  to
tumor geometry variations
Risk reduction via built-in dose constraint enforcement
Workflow efficiency with simultaneous session count and
dose predictions

The hybrid architecture's MAE of 0.0034 (±0.0007 SD)
on dose prediction and 0.99 classification accuracy repre-
sent  significant  improvements  over  both  manual  clinical
methods  (typical  MAE=0.15-0.2)  and  previous  compu-
tational  approaches  using  single-modality  CNNs  (MAE=
0.008-0.012).  Moreover,  as  we  expected  and  mentioned
earlier, as shown in Table 2,  our designed and proposed
architecture  achieved  a  0.12  higher  R2  score  (0.998  vs
0.878) compared to early fusion baselines. Also, our dual-
stream  architecture  reduced  dose  prediction  errors  by
23%  compared  to  ViT-only  implementations  in  ablation
studies.

On  the  other  hand,  we  have  consulted  with  radiation
oncologists to ensure that the predicted dose distributions
are clinically acceptable and they have approved our method
and results.

CONCLUSION
In  this  research,  MRI  images  and  clinical  and  treat-

ment data of 33 patients were analyzed. Based on the ana-
lysis of these data and the application of different models,
we aimed to predict the optimal dose of radiotherapy for
patients  with  astrocytoma.  In  the  regression  model  for
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simultaneous  prediction,  we  evaluated  the  number  of
prescribed doses and the number of treatment sessions for
each patient. In the classification problem, patients were
grouped into four classes based on the required dose. For
dose  prediction,  a  robust  feature  extraction  model  was
developed  by  combining  the  VIT  model  and  the  CNN
network.  Subsequently,  the  regression and classification
problems were addressed using the MLP network,  SVM,
and  Random  Forest  algorithms.  The  performance  of  the
regression model was assessed by normalizing the results
and  scaling  them  between  zero  and  one.  The  CNN_VIT-
b16 model yielded the best results, with a mean absolute
error of 0.005 and an R2 score of 0.993 for predicting the
number of  radiotherapy sessions.  In the prescribed dose
prediction problem, the model achieved a mean absolute
error  of  0.0034  and  an  R2  score  of  0.998.  In  the  clas-
sification task, the model attained 0.99 accuracy and 0.99
F1-score on the test data. Given these promising results,
the  designed  model  has  the  potential  to  serve  as  a
diagnostic auxiliary tool for doctors and specialists in the
treatment of patients with low-grade astrocytoma.

We acknowledge that the small sample size in this study
may limit the generalizability of our findings and the stat-
istical power of our analyses. The best way to mitigate the
limited sample size is to implement a stratified 5-fold cross-
validation  strategy,  ensuring  each  fold  maintains  the  ori-
ginal class distribution.

We  also  acknowledge  that  statistical  power  analyses
often  depend  on  having  accurate  estimates  of  expected
effect sizes, which in our case were not available in advance
due  to  the  lack  of  prior  research  on  deep  learning-based
dose prediction for astrocytoma using similar image-based
and clinical data inputs.

While our initial study included 33 patients, we recog-
nize this may impact the generalizability of our findings. To
address this, we are actively pursuing several strategies:

a) Data Augmentation: We are implementing advanced
augmentation techniques, including geometric transforma-
tions  (rotations,  scaling,  flips),  intensity  adjustments,  and
the  addition  of  synthetic  noise,  to  effectively  expand  the
training dataset and improve the model's robustness.

b)  Transfer  Learning:  We  are  exploring  transfer  lear-
ning approaches using pre-trained models on larger,  pub-
licly  available  brain  MRI  datasets  (e.g.,  BraTS,  TCGA)  to
leverage existing knowledge and improve performance with
limited data.

c) Multi-Institutional Collaboration: We have established
collaborations with additional medical centers to prospec-
tively collect data and validate our model on a more diverse
patient  population.  An  interim  analysis  will  be  performed
when we reach 70 patients.

On the other  hand,  we believe that  the 128x128 reso-
lution is sufficient to capture the relevant structural infor-
mation for dose prediction. Astrocytomas are characterized
by their infiltrative nature and overall shape, which are still
discernible at this resolution. However, to mitigate potential
information  loss,  it  is  suggested  to  explore  the  following
issues in further studies:

a)  Multi-scale  input:  Incorporating  additional  higher-
resolution  inputs  as  a  separate  channel.

b) Feature map up-sampling: Implementing up-sampling
layers within the CNN to recover higher-resolution feature
maps before the final prediction.

c) Attention mechanisms: Using different attention me-
chanisms to focus on the most relevant regions of the lower-
resolution  images,  guiding  the  model  to  prioritize  critical
tumor details.

It  is  recommended  to  conduct  experiments  to  quan-
titatively assess the impact of different resolutions on model
performance in future research.

Moreover,  future  work  could  involve  the  use  of  other
imaging  modalities,  such  as  CT  scans  or  PET  images,  to
refine dose prediction. Additionally, the model could be ex-
tended to predict the required dose for patients with other
types  of  brain  tumors,  offering  a  broader  application  in
oncology  treatment  planning.

In  summary,  future  work  should  focus  on  several  key
areas  to  enhance  the  model's  clinical  utility  and  genera-
lizability.  Firstly,  expanding  the  dataset  through  multi-
institutional collaborations and prospective data collection
is  crucial  to  validate  the  model's  performance  on  a  more
diverse  patient  population.  Secondly,  incorporating multi-
modal  data,  such  as  genetic  and  proteomic  information,
could  further  refine  dose  predictions  and  personalize  tre-
atment  plans.  Thirdly,  investigating  the  use  of  more  adv-
anced deep learning architectures, including attention me-
chanisms  and  graph  neural  networks,  may  improve  the
model's ability to capture complex relationships within the
data. Finally, evaluating the model's impact on clinical out-
comes,  such  as  progression-free  survival  and  overall
survival, in a real-world clinical setting is essential to dem-
onstrate its practical value and guide its implementation in
routine practice.

LIMITATIONS
In this study, the data under investigation included three

types of information: MRI images of patients, clinical data,
and patients' medical histories. The requirement for comp-
lete  patient  records  limited  the  scope  of  data  collection.
Additionally, hardware constraints led to further limitations,
such  as  prolonged  training  times,  the  inability  to  process
large  volumes  of  images,  and  restrictions  on  developing
more complex models.  Access to larger datasets and more
powerful  hardware could  enhance the model’s  capabilities
and improve its performance.
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