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Abstract:

Introduction: Differentiating brain tumors through neuroimaging is  challenging due to overlapping radiological
features, requiring advanced techniques and clinical correlation for accurate diagnosis. The aim of this retrospective
observational  monocentric  study  is  to  determine  the  diagnostic  performance  of  combining  perfusion-weighted
imaging  (PWI),  diffusion-weighted  imaging  (DWI),  and  magnetic  resonance  spectroscopy  (MRS)  for  MRI-based
differential diagnosis of the three major classes of adult malignant intra-axial brain tumors. Principal component
analysis (PCA) is applied to identify relevant imaging features, with the goal of supporting preoperative diagnosis
beyond conventional MRI alone.

Methods: We selected 72 adult patients who underwent MRI examination, including DWI, PWI, and MRS imaging
before surgery, for suspected malignant intra-axial expansive lesions (namely glioblastoma, metastasis, or primary
non-Hodgkin lymphoma). The definitive histological diagnosis was obtained on post-operative specimens. Quantitative
variables derived from DWI, PWI, and MRS acquisition were identified and processed using principal component
analysis. The differences between groups for the most relevant parameters identified by PCA were then tested by the
Kruskal-Wallis test.

Results: Finally, a total of 11 specimens of non-Hodgkin lymphomas, 18 specimens of single metastases, and 43
specimens of wild-type glioblastomas were gathered. CBF, CBV, MTT, ADC​​, and lipid-lactate (Lip-Lac) at MRS ​​were
found to be the most relevant variables for differential diagnostic purposes through PCA analysis. In particular, ADC
and Lip-Lac were more strongly associated with differentiating lymphoma from the other two disease classes, while
CBF, CBV, and MTT contributed more to differentiating glioblastoma from metastasis.

Discussion: In this study, ADC and Lip-Lac differentiated CNS lymphoma, while CBV, CBF, and MTT distinguished
GBM from metastases, supporting PCA’s clinical value beyond diagnostic workflows.

Conclusion: The combined use of PWI, DWI, and MRS can assist the radiologist in accurate preoperative differential
diagnosis of the three main classes of adult malignant intra-axial brain neoplasms, enhancing diagnostic performance
beyond that of conventional MRI alone.
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1. INTRODUCTION
The actual global age-standardized incidence of prim-

ary malignant brain tumors is about 3.5 per 100,000 per
year for males and 2.6 per 100,000 per year for females.
These rates are higher in Western countries, probably due
to differences in life  expectancy and access to advanced
diagnostic  technologies  compared  to  less  developed
countries.  The  most  common  types  of  malignant  brain
tumors  vary  significantly  by  age  group,  with  high-grade
gliomas,  brain  metastases,  and  central  nervous  system
(CNS)  lymphomas  being  the  most  frequent  histological
types in adults. Although CNS tumors are relatively rare in
adults, they are a significant cause of reduced life quality,
functional limitation of daily activities, and life shortening
[1-3].

Continuous  advancements  in  diagnostic  technologies
and imaging tools are progressively improving the identi-
fication  of  brain  tumors.  Magnetic  resonance  imaging
(MRI)  remains  the  most  important  technique  for  this
purpose, offering an optimal balance between tissue char-
acterization and anatomical details, thus playing a crucial
role from the initial clinical evaluation to the monitoring of
tumor recurrence in patients diagnosed with brain tumors
[4,  5].  Due  to  MRI,  radiologists  are  now  responsible  for
providing not only morphological data on tumor structure
but  also  functional  information,  such  as  tumor  vascu-
larization, metabolite concentrations, cellular density, and
white matter fiber integrity. This detailed characterization
of  pathological  tissue  often  enables  preliminary  tumor
type  classification  even  before  surgical  intervention  and
histopathological  examination,  thereby  contributing  to
early  diagnosis  and  improved  patient  management  [5].
However, modern radiologists must address the challenge
of managing the increasing volume and complexity of data
generated by a single MRI examination, and of integrating
this  information  to  support  the  most  accurate  and  com-
prehensive diagnosis possible.

The  same  considerations  apply  to  MRI  data  used  for
computational analysis on large datasets. As the number
of  extracted  features  increases,  the  volume  of  data
required  to  achieve  statistically  significant  results  also
grows. This can lead to reduced diagnostic accuracy due
to dimensionality problems, specifically when multiple and
multiparametric MRI sequences are used, as the number
of  possible  combinations  of  imaging  features  becomes
extremely large. Evaluating and simplifying the complexity

in imaging data is particularly critical in the context of AI-
based technologies applied to cancer detection [6, 7]. To
address this problem, preliminary feature selection can be
employed  to  reduce  dimensionality  while  preserving  as
much  imaging  information  as  possible.  Among  dimen-
sionality  reduction  procedures,  one  of  the  most  adopted
techniques  is  principal  component  analysis  (PCA)  [8],
generally  used  in  machine  learning  and  artificial  neural
networks [9, 10], but potentially applicable also to other
frameworks [11, 12].

We  hypothesized  that  using  a  PCA-based  statistical
approach  could  help  reduce  data  redundancy  and  assist
radiologists in prioritizing MRI features with the greatest
diagnostic value for distinguishing among the three main
types of adult malignant intra-axial brain tumors. Building
on  this  premise,  the  goal  of  the  study  is  to  evaluate  the
diagnostic  performance  of  combining  diffusion-weighted
imaging  (DWI),  perfusion-weighted  imaging  (PWI),  and
magnetic  resonance  spectroscopy  (MRS)  for  MRI-based
differential  diagnosis.  PCA  is  applied  to  identify  which
parameters from these sequences are most informative in
this specific clinical context. Ultimately, this approach may
contribute to more efficient imaging protocols and support
clinical decision-making by enhancing the interpretation of
multiparametric MRI in a statistically robust manner.

2. MATERIALS AND METHODS
In this retrospective, observational, monocentric study,

we  analyzed  MRI  data  of  patients  referred  to  the  emer-
gency  department  of  “Sant’Anna  e  San  Sebastiano”
Hospital,  Caserta,  for  headache  or  focal  neurological
symptoms between 2018 and 2020, who underwent brain
computed tomography and were found to have a positive
result  for  a  suspected  malignant  brain  expansive  lesion.
These patients subsequently underwent brain MRI exami-
nation  for  pre-surgical  lesion  identification  and  charac-
terization,  including  DWI,  PWI,  and  MRS  sequences.
Patients  who  refused  MRI  and  those  whose  MRI  was
affected  by  motion  or  device-related  artifacts  were
excluded  from  the  analysis.  The  same  exclusion  criteria
applied to patients who refused surgery or brain biopsy,
patients with tumefactive lesions other than brain tumors,
and patients with no or inconclusive pathological  exami-
nation  results.  Other  exclusion  criteria  were  previous
brain surgery or panencephalic radiotherapy. All patients
underwent a standard contrast-enhanced MRI examination
on the same 1.5T scan unit (Philips Ingenia, Philips, Best,
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The  Netherlands)  using  the  same  16-channel  head  coil.
Concerning  the  three  above-mentioned  sequences,  the
acquisition  parameters  were  set  as  follows:

Spin-echo echo-planar axial DWI sequence, including two
b-values  (b=0,  b=1000  s/mm2),  with  corresponding
apparent diffusion coefficient (ADC) map reconstruction;
Echo planar axial dynamic susceptibility contrast (DSC)
MR PWI during a 5 ml gadolinium-based contrast media
bolus  at  a  rate  of  5  ml/sec,  followed  by  a  20  ml  saline
flush.  According  to  recent  recommendations,  DSC
acquisition  was  preceded  by  5  ml  gadolinium-based
contrast media and 20 ml saline flush administration to
pre-saturate brain tissue and reduce T1 contamination in
DSC imaging. Manual region of interest (ROI) placement
was performed by two neuroradiologists in consensus on
the solid enhancing portion of the tumor on post-contrast
3D  T1w  images,  and  such  defined  ROI  was  then
transferred on color maps (i.e. cerebral blood flow (CBF),
cerebral  blood volume (CBV),  mean transit  time (MTT),
and time to peak (TTP) maps); relative values were then
computed  on  the  local  workstation  by  an  experienced
neuroradiologist;
MRS  with  single-voxel  technique  (intermediate
TE=144ms, TR=3sec, TM=14ms), with 1.5x1.5x1.5 voxel
and slice-selection gradient strength of 0.15G/cm; voxel
was positioned on volumetric pre-contrast images (both
T2w and T1w, depending on the single case). Metabolite
spectra with corresponding ratios were computed on the
local workstation by an experienced neuroradiologist.

Histological diagnosis was obtained on post-operative
specimens by an experienced neuropathologist, who finally
identified 11 cases of  non-Hodgkin lymphoma (NHL),  18
cases  of  single  brain  metastasis  (MET),  and  43  cases  of
wild-type glioblastoma (GBM).

MRI  DICOM  data  from  each  examination  were
anonymized  and  locally  stored.  Quantitative  variables
derived  from  DWI,  PWI,  and  MRS  acquisitions  encom-
passed:  ADC  values  from the  DWI  sequence;  CBV,  CBF,
MTT, and TTP values within the specific ROI from the DSC
PWI  acquisition;  metabolite  peaks,  such  as  lipid-lactates
(Lip-Lac),  N-acetylaspartate  (NAA),  choline  (Cho),  and
creatine (Cr), with their ratios from MRS acquisition. To
minimize  information  loss,  the  above-mentioned  quanti-
tative variables derived from DWI, PWI, and MRS acqui-
sitions were analyzed and plotted using CA [13].PCA was
performed  for  dimensionality  reduction  and  exploratory
data analysis, as it transforms a set of possibly correlated

variables  into  a  smaller  set  of  uncorrelated  variables
called principal components (PCs). These components are
linear  combinations  of  the  original  variables  and  are
ordered  so  that  the  first  component  captures  the  maxi-
mum possible  variance  in  the  data,  the  second  captures
the maximum remaining variance orthogonal to the first,
and  so  on.  Before  PCA,  variables  were  standardized  by
calculating their means and standard deviations, and then
applying  the  standardization  formula  z  =  (x−μ)/σ.  To
determine how many PC to retain, a scree plot graph was
obtained. To determine whether the differences among the
three groups (NHL, GBM, and MET) were significant, the
Kruskal-Wallis  test  was  used.  Finally,  for  relevant  para-
meters, between-groups differences (NHL vs. GBM, GBM
vs.  MET,  and  MET  vs.  NHL)  were  tested  using  the
Wilcoxon signed-rank test. An original p-value of less than
0.01 was set, followed by Bonferroni correction to adjust
for  multiple  comparisons.  For  all  analyses,  a  final  signi-
ficance  level  of  p  =  0.0011  (Bonferroni-corrected)  was
established. Statistical analyses were performed using the
XLStat package v.2019. An example of an MRI of the three
malignant brain lesions included in the analysis is shown
in Fig. (1). Demographic data and the prevalence of final
histological  diagnoses  in  our  sample  are  summarized  in
Table 1.

3. RESULTS
We collected homogeneous and complete MRI data of

72 adult patients (M:F 45:27; mean age±SD 59,6±12,4).
At histological examination, lesions were classified into 11
NHL, 18 MET, and 43 wild-type GBM; concerning single
brain metastases, 9 originated from lung cancer (8 adeno-
carcinoma  and  1  microcitoma),  4  from  breast  cancer,  2
from  upper  digestive  system  neoplasm,  2  from  bladder
cancer, and 1 from skin melanoma. Despite the different
pathological origins, due to the relatively limited sample
size,  metastases  were  analyzed  as  a  single  group.  The
unbalanced distribution of the sample in this study reflects
the  actual  prevalence  of  the  disease  subtypes  in  the
general population [2, 3]. Rather than artificially balancing
the  groups,  which  could  introduce  bias  or  reduce  eco-
logical  validity,  we  opted  to  preserve  the  natural  pro-
portions  to  enhance  the  clinical  applicability  of  the
findings; this approach ensures that the proposed model
remains  grounded  in  real-world  conditions,  thereby  im-
proving  generalizability  and  relevance  to  everyday  diag-
nostic  and  treatment  decisions.  No  statistical  difference
concerning  demographics  was  observed  in  the  three
subgroups.

Table 1. Patients’ data summary. Patients’ demographical data and pathological diagnoses prevalence.

- Patients (n) Prevalence (%) M:F Age±SD

Total 72 100% 45:27 59.6±12.4
Wild-Type Glioblastoma 43 59.7% 28:15 62±15.5
Non-Hodgkin Lymphoma 11 15.3% 6:5 58.4±11.8
Single Brain Metastasis 18 25% 11:7 61.3±12.6
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Fig.  (1).  Example  of  conventional  MRI  findings  in  the  three  most  common  adult  brain  tumor  types.  Three  examples  of
conventional MRI findings in non-Hodgkin lymphoma (first row), single brain metastasis (second row), and wild-type glioblastoma (third
row): A) FLAIR imaging; B) post-contrast T1w imaging; C) b-1000 DWI and D) relative ADC map; E) CBV map from DSC-PWI, with ROI
placement (white continuous line); F) MRS metabolite spectrum (TE=144 ms).

To define which were the most informative parameters
among  the  ones  obtained  in  DWI,  PWI,  and  MRS,  the
statistical  procedure  of  PCA was  used  to  summarize  the
information content of these variables and identify among
them  a  smaller  set  of  informative  indices  that  could  be
more  easily  visualized  and  analyzed.  PC-1  captures  the
maximum possible variance in the data (29.1%), and PC-2
captures the maximum remaining variance orthogonal to
the  first  (18.8%).  The  scree  plots  graph  showed  the
eigenvalues (λ) in ascending order (λ indicate how much of
the  total  variance  in  the  data  is  captured  by  each  PC;
higher λ means that the corresponding PC accounts for a
greater portion of the variability in the dataset); the point
where  the  curve  starts  to  flatten  (PC5)  indicates  the
optimal number of components considered. A summary of
PCA results is shown in Fig. (2), while the scree plot graph
is shown in Fig. (3); λ, variance, and cumulative variance
of PC parameters deriving from PCA are listed in Table 2.
By interpreting each PC and examining the magnitude and
direction of the coefficients, it was found that PC-1 has a
large association with DWI-derived ADC values, as well as
with  CBF  and  CBV  PWI-derived  parameters,  while  PC-2
has  a  large  association  with  MTT from PWI  and  Lip-Lac
ratio from MRS. Kruskal-Wallis test was used to confirm

such  evidence  and  compute  p-values,  confirming  signi-
ficant  results  for  ADC  (p=2.7e-06),  Lip-Lac  (p=4.4e-07),
CBV (p=2.5e-08),  CBF (p=1e-10),  and MTT (p=5.6e-05).
Therefore, the identified parameters were considered for
further  analysis.  Indeed,  when  comparing  the  impact  of
each  MRI-derived  metric  identified  at  PCA  in  the  three
groups (NHL, GBM, and MET) by means of the Wilcoxon
signed-rank  test  (Bonferroni  corrected),  we  obtained
significant  results  for:

ADC in differentiating NHL and the other two groups of
lesions  (p=9.6e-07  for  GBM  and  p=3.4e-05  for  MET,
respectively);
Lip-Lac in differentiating NHL from the other two groups
of  lesions  (p=1.1e-06 for  GBM and p=2.4e-07 for  MET,
respectively);
CBF in differentiating GBM from the other two groups of
lesions  (p=6.8e-11  for  NHL  and  p=4.4e-10  for  MET,
respectively);
CBV in differentiating GBM from the other two groups of
lesions  (p=6.8e-11  for  NHL  and  p=2.0e-05  for  MET,
respectively);
MTT in differentiating GBM from the other two groups of
lesions  (p=0.00051  for  NHL  and  p=0.0006  for  ME,
respectively).
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Table 2. Eigenvalues, percentage of variance, and cumulative variance of PC parameter deriving from PCA. λ is
used as abbreviation for eigenvalue; variance and cumulative variance are expressed as percentages (%).

- PC₁ PC₂ PC₃ PC₄ PC₅ PC₆ PC₇ PC₈ PC₉

λ 26.196 16.883 13.818 11.134 0.7558 0.5596 0.3947 0.2988 0.1879
Variance 291.065 187.593 153.535 123.711 83.978 62.181 4.386 33.195 20.882

Cumulative 291.065 478.658 632.193 755.904 839.882 902.063 945.923 979.118 100

Fig. (2). PCA factor map. Factor map of the PCA performed on the 3 different pathological groups (NHL, GBM, and MET, respectively)
and the 9 considered MRI-derived quantitative variables (namely: ADC, CBV, CBF, MTT, TTP, Lip-Lac, Cho-NAA, Cho-Cr, and NAA-Cr).
Points represent observations (that are close to each other on the map are similar in their underlying variable patterns), with different
colors representing the 3 different pathological groups (blue for NHL, red for GBM and green for MET); ellipses represent 68% confidence
intervals of core regions; arrows (vectors) show the contribution of each original variable to the components, with arrows’ directions
representing the correlation between variable-principal component and arrows’ length representing the magnitude of the correlation.
PC-1 (x-axis) and PC-2 (y-axis) correspond to the first and second principal components, respectively, accounting for the highest and
second-highest variance in the dataset. Variables pointing in similar directions are positively correlated, while those pointing in opposite
directions are negatively correlated.
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Fig. (3). Scree plot from PCA analysis. The scree plot displays the number of the principal component versus their corresponding
eigenvalue, as well as the cumulative variance (%) explained.

A similar trend was also observed for CBF and CBV in
differentiating  between  MET  and  NHL  (p=0.00073  and
p=0.0056,  respectively).  No  significant  result  was
observed for ADC and Lip-Lac in differentiating between
GBM and MET (p=0.42 and p=0.022, respectively) and for
MTT in differentiating between NHL and MET (p=0.72).

A summary of Kruskal-Wallis test and Wilcoxon signed-
rank test results concerning significant parameters iden-
tified  at  PCA,  coupled  to  boxplot  and  data  dispersion
representation, is shown in Fig. (4). Conversely, Kruskal-
Wallis  results  concerning  non-significant  parameters
identified at PCA are reported as Supplementary Material.

4. DISCUSSION
PCA is a reliable statistical technique that can enhance

the diagnostic value of MRI by identifying the most rele-
vant  imaging  parameters  in  complex  clinical  datasets.
When numerous MRI sequences and quantitative metrics
are  collected  during  imaging  acquisition,  PCA  reduces
dimensionality  while  preserving  the  variance  that  best
represents  the  underlying  data  structure  and  highlights
patterns that may not be immediately apparent, thus iden-
tifying  which  MRI  parameters  contribute  most  to  distin-
guishing different  nosological  entities.  PCA is  commonly
adopted  in  neuroimaging  studies  in  contexts  involving
large-scale  data,  such  as  radiomics  or  deep  learning,
where  high-dimensional  feature  sets  are  extracted  from
MRI scans [14-17]. For example, in recent times, Akbari et
al.  demonstrated  that  PCA of  DSC MRI  could  effectively
quantify tumor microenvironment acidity in glioblastoma.
In contrast, Gaikwad et al.  reported that combining PCA
with  a  probabilistic  neural  network  enabled  accurate
classification of brain tumors based on imaging data [10,
18].  By  contrast,  PCA  is  less  commonly  applied  to  the

more  limited  sets  of  quantitative  parameters  typically
derived  from  conventional  MRI  sequences  in  standard
neuro-oncological  protocols,  such  as  ADC  values  from
DWI, CBV from PWI, or metabolite ratios from MRS; these
datasets  usually  include  only  a  handful  of  well-charac-
terized  variables,  making  dimensionality  reduction  seem
less  urgent.  Even  in  such  cases,  PCA  can  reveal  latent
patterns,  reduce  variable  correlation,  and  identify  key
diagnostic  parameters,  especially  when  multiple  quanti-
tative sequences are combined. Despite its routine use in
AI-based  workflows,  its  limited  adoption  in  clinical
practice  may  be  a  missed  opportunity  to  improve  diag-
nostic accuracy and streamline interpretation.

With this background, we hypothesize that PCA applied
to  data  from  DWI,  DSC-PWI,  and  single-voxel  MRS  MRI
images of patients with suspected brain tumors may help to
identify  the most  informative  imaging-derived parameters
to assist the radiologist in accurately predicting brain tumor
type before pathological examination. CBF, CBV, MTT, ADC
​​,  and Lip-Lac at  MRS ​​were found to be the most relevant
MRI-derived indices for differential diagnostic purposes in
brain  tumor  allocation;  in  particular,  ADC  and  Lip-Lac
contributed  more  to  the  differentiation  of  NHL  from  the
other  two  disease  classes,  while  MTT,  CBF  ​​,  and  CBV
contributed more to the differentiation of GBM from MET.
Some recent studies provided the evidence that DWI, PWI
and MRS can be used as reference techniques to diagnose
different  brain  malignancies  with  a  greater  level  of
sensitivity  and  accuracy,  by  means  of  simple  descriptive
statistics [19]; the major strength of our analysis is given by
the  confirmatory  role  of  PCA  in  determining  which  PWI,
DWI,  and  MRS  MRI-derived  metrics  may  be  more
informative in the specific clinical setting of brain tumor in
adult patients.
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Fig.  (4).  Scattered  boxplots  of  the  most  relevant  indices  identified  at  PCA.  Scattered  boxplots  of  the  most  relevant  indices
identified at PCA, with data dispersion and minimum value/median value/maximum value/quartiles/inter-quartiles ranges concerning ADC
(A), Lip-Lac (B), CBV (C), CBF (D), and MTT (E) in the three pathological groups: NHL (red), wild-type GBM (blue), and single brain MET
(green); p-values among groups (Bonferroni corrected) are also reported on the top of each boxplot table.

The most used diffusion metric at MRI examination is
represented  by  ADC  values  [20-23],  whose  correlation
with tumor cellularity has been explored in several studies
over  the  years  [24-28],  although  sometimes  with  some
controversial results [29, 30]. Highly cellular tissues, such
as  aggressive  brain  lesions,  typically  show  lower  ADC
values.  ADC has  been  proposed  as  a  standalone  tool  for
tumor  differentiation;  for  example,  dysembryoplastic
neuroepithelial  tumors  in  children  display  higher  ADC
than  more  common  pediatric  tumors  [31].  However,
results  are  inconsistent  when  using  ADC  to  distinguish
tumor subgroups, such as between GBM subtypes [32] or
low-grade astrocytomas and oligodendrogliomas [33]. The
most  established  adult  application  remains  identifying
primary CNS lymphoma, which consistently shows lower
ADC values than glial or metastatic lesions [23, 26, 33, 34,
35].  Our  results,  in  line  with  this  evidence [35],  support
the  central  role  of  ADC  measurements  in  differential
diagnosis of brain tumors, with PCA analysis revealing its
major contribution in the identification of CNS lymphomas

(namely,  the  tumor  with  the  most  marked  restriction  in
diffusion coefficients). Conversely, the lack of significance
for ADC in differentiating GBM from brain MET provides a
further contribution to understanding the role of diffusion
in  this  specific  setting,  helping  to  clarify  some  of  the
conflicting  findings  reported  in  the  scientific  literature
[36,  37].

Angiogenesis is essential for tumor growth and spread;
MRI perfusion and vascular microstructure analysis aid in
both  differential  diagnosis  and  monitoring.  Among  PWI
techniques,  including  DSC,  dynamic  contrast  enhanced
(DCE),  and  arterial  spin  labeling  (ASL),  DSC-PWI  is  the
most studied and widely used in clinical practice [24, 38].
DSC is based on the principle of susceptibility signal loss
on  T2*w  images  during  intravenous  administration  of
gadolinium-based  contrast  agent;  signal  intensity/time
curves are the final output of such progressive signal loss
and are translated into color maps, including MTT, CBF,
and  CBV.  DSC-PWI  parameters,  namely  CBF  and  CBV
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maps,  were  demonstrated  to  outperform  and  be  inter-
changeable  in  assessing  tumor  vascularity  compared  to
other  perfusion  parameters,  which  are  generally  more
discordant [38-42]. In particular, DSC perfusion curves in
high-grade glial lesions usually return very quickly close to
baseline,  whereas perfusion curves in  tumors with leaky
capillaries,  such  as  metastases,  do  not  have  the  same
trend. Our results confirm this finding, proposing a major
role for CBV and CBF parameters in distinguishing highly
proliferative  lesions  like  GBM  from  metastases  or  CNS
lymphoma  [43],  and  a  minor  supportive  role  in  distin-
guishing  between  MET  and  NHL.  Conversely,  MTT  has
been  more  frequently  used  as  an  indirect  indicator  of
deficient  microvascular  blood  flow  control  in  treatment-
resistant and recurrent brain tumors. In contrast, its role
in  distinguishing  high-grade  brain  tumors  is  less
accurately  known  and  ancillary  to  CBF/CBV  changes
[43-45];  however,  these  findings  suggest  that  MTT
variations are consistent with CBF and CBF fluctuations,
moving  in  the  same  direction  and  providing  additional
information  on  tumoral  vascularity  and  hemodynamics.

Finally, MRS reveals the biochemical profile of patho-
logical  brain  tissues,  indicating  high  cellular  turnover,
disrupted  neuronal  homeostasis,  and  anaerobic  meta-
bolism.  Proton  MRS  is  most  commonly  used,  with
intermediate TE (144 ms) typically allowing identification
of  key  tumor  metabolites.  While  both  single-  and  multi-
voxel  techniques  are  available,  single  voxel  MRS  is
preferred in brain tumors for its diagnostic adequacy and
shorter  acquisition  time  [38,  46,  47].  Brain  neoplasms
typically present with elevated Cho and decreased NAA, as
confirmed  by  several  studies  where  the  presence  of
neoplastic  lesions  was  indicated  by  an  altered  Cho/NAA
ratio at intermediate/long TE. Conversely, the potential for
MRS in distinguishing brain tumor types is more contro-
versial, with the most significant contribution for Lip-Lac
peak  in  CNS  lymphoma  identification;  however,  such
finding  may  be  superimposable  to  the  one  observed  in
different  high-grade  brain  tumors  with  evidence  of  high
cell membrane turnover, such as glioblastoma (especially
when  large  necrotic  areas  are  present)  [48-50].  In  our
cohort, in line with this last evidence, Lip-Lac evaluation
at  intermediate  TE  was  the  only  contributive  MRS
parameter,  useful  in  differentiating  NHL  from the  other
two groups of brain tumors; no significant result emerged
for  the  other  considered  metabolite  ratios.  The  same
applies  to  the  Lip-Lac  peak  that  fails  in  distinguishing
between GBM and MET, while it is known that MRS may
provide a more consistent contribution when performed in
peritumoral  surrounding  edema  [51];  however,  for  this
purpose,  MRS's  role  becomes  particularly  evident  when
combined  with  other  advanced  MRI  imaging  modalities
[52].

CONCLUSION
PCA statistical approach helps in reducing redundancy

and supporting the radiologist in focusing on MRI features
with the highest diagnostic impact; ultimately, this method
can  facilitate  the  development  of  optimized  imaging

protocols and improve clinical decision-making by refining
the interpretation of multiparametric MRI data in a stat-
istically  robust  manner.  By  means  of  PCA  analysis,  we
demonstrated  how  the  combined  use  of  DWI,  DSC-PWI,
and  MRS  can  assist  the  radiologist  in  an  accurate  pre-
operative differential diagnosis of the three main classes
of adult malignant intra-axial brain tumors, increasing the
diagnostic  performance  obtained  with  conventional  MRI
alone. The most informative parameters deriving from this
preliminary  study  are  represented  by  ADC  values,  MTT,
CBV,  CBF,  and  Lip-Lac  peak.  These  results  strongly
suggest  a  potential  role  for  a  combined  PCA-based
approach to multiparametric advanced MRI imaging, even
across  different  technical  settings  and  potentially  in
various  clinical  scenarios.  However,  further  studies  on
larger  samples  or  involving  different  disease  categories
are still needed to validate and generalize the presented
results; our medium- to long-term objective is to apply the
same approach to  a  larger  sample  of  subjects,  including
acquisitions  obtained  using  different  MRI  systems  or
imaging studies  concerning lesions of  various types that
may be relevant to the differential diagnosis of the most
common adult brain tumors.

LIMITATIONS
This study suffers from some limitations that must be

stated  and  discussed.  The  first  one  regards  the  retro-
spective monocentric design of the study, which does not
allow for further analysis and speculations on the role of
advanced MRI techniques in the diagnosis of brain tumors.
Secondly, the sample size is somewhat limited, taking into
account  the  incidence  of  these  pathologies  in  Western
countries; however, despite the limited body of collected
evidence,  the  sample  has  the  merit  of  being  very  homo-
geneous,  as  all  patients  underwent  the  same  compre-
hensive  MRI  examination.  As  a  last  consideration,  the
presented results only apply to a specific clinical setting
(i.e., machine vendor, field strength, type of head coil, MRI
protocol with specific sequence type and parameters, etc.)
and can be somehow influenced by observers’ experience
at the moment of data collection; for this reason, the same
approach  should  be  tested  in  different  settings  to
generalize  its  performance.
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