
 The Open Neuroimaging Journal, 2008, 2, 73-93 73 

 

 1874-4400/08 2008 Bentham Open 

Open Access 

Brain-Mind Operational Architectonics Imaging: Technical and Methodo-
logical Aspects  

Andrew A. Fingelkurts*, Alexander A. Fingelkurts 

BM-Science – Brain & Mind Technologies Research Centre, P.O. Box 77, FI-02601, Espoo, Finland 

Abstract: This review paper deals with methodological and technical foundations of the Operational Architectonics 

framework of brain and mind functioning. This theory provides a framework for mapping and understanding important 
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INTRODUCTION  

 Practically all of the major unsolved problems in science 
today are about complex, self-organizing systems, where 
vast number of their components interacts simultaneously 
with each other and where the change in one agent influ-
ences the behavior of other [1]. Brain is one example of such 
natural biologically evolved systems [2-6].  

 Indeed, “more than 10
15

 of neurons and about 150 billion 
of brain cells are connected with one another locally (more 
than 10,000 direct connections of one neuron with others) in 
the assembly of structures. These structures in their turn 
globally communicate with one another through long-
distance projections in order to act in a concerted fashion in 
the construction of the behavior of the large-scale networks. 
Because the number of distinct brain structures scales pro-
portionally with network size, there are potentially an ever 
increasing number of structures with which a particular brain 
structure may need to interact” (see p. 847-848 in Ref. [7]).  

 This is the so called “elementary basis” of the brain, 
which enables a very high number of combinations of possi-
ble brain states – multivariability of brain functioning [8,9]. 
Recently neuroscientists are debating how synchronous neu-
ral activity within the brain creates such states and orches-
trates attention to and perception of objects or scenes, sepa-
ration of remembered parts of an experience and binding 
them all together into a coherent whole, thinking and, per-
haps, even phenomenal consciousness [10]. 

 There is a growing consensus among researchers that 
cognitive function arises from dynamic combination of lo-
calized operations in specific brain areas and distributed 
interactions among these operations [11-13]. For this reason, 
it is hypothesized that the neural correlates of cognition and  
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consciousness must account for the integrated and coherent 
macro-operation of large-scale brain activity [14]. However, 
it is not clear how to combine the notions of ‘localization’ 
and ‘interaction’ in order to best describe how the brain 
translates physiological operations into mental cognition. 

 Modern in vivo brain imaging methods of PET, fMRI, 
Optical Imaging, and EEG (MEG) offer a unique opportu-
nity to explore the neural networks in human brain. How-
ever, in order to understand how the brain functions, it is of 
central importance to map the pattern of the neuronal func-
tional connectivity [15].  

 Hemodynamically based methods (PET, fMRI, and Opti-
cal Imaging) determine functional connectivity by evaluating 
the correlation in hemodynamic activity between two re-
gions. What is obtained is the information about how such 
hemodynamic activity in one region is related to that in other 
regions [16]. However, brain functional connectivity is usu-
ally discussed in terms of how neural (electrical) activity in 
one area is related to neural (electrical) activity in other ar-
eas. The neural networks that might be identified on the ba-
sis of neural electrical (EEG) interactions and transient brain 
states are not the same as macroscopic systems identified on 
the basis of correlated blood flow observed over a variety of 
brain states [17].  

 Brain functional connectivity, which is defined as the 
temporal correlation between spatially remote neurophysi-
ological events [18], is believed to serve as the mechanism 
for the coordination (or discoordination) of activity between 
different dynamic cell assemblies across the cortex (for re-
view, see Ref. [15,19]). According to recent interpretations, 
in the dynamic functional connectivity between such assem-
blies, the nonlinear interdependence is mostly reflected 
[5,13,20,21]. 

 In recent years, it has become clear that complex nonlin-
ear time series such as electrical brain activity (EEG) can 
have extremely complicated behavior [9,21,22]. It has also 
become clear that standard methods of time series analysis, 
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such as mean power analysis, Fourier transforms with con-
sequent averaging and parametric linear modeling, are gen-
erally not exactly adequate in discerning the structure of 
EEG signals, and may, in fact, lead to erroneous conclusions 
[23,24]. EEG data indeed appear to have a rich nonstation-
ary and nonlinear structure [5,8,9,21,22], which presumably 
reflects the current functional state of neuronal masses rather 
than a random process [24,25] and the processing of an in-
ternal mental contexts (top-down processing) [26]. 

 Among the different methodological strategies adopted to 
study the brain-mind complexity and its expression in the 
complexity of EEG signal, the so called “Operational Ar-

chitectonics” (OA) framework [9,7,14,27,28] has received 
attention, especially due to its good compromise between 
simplicity, neurophysiologic accuracy, and cognitive plausi-
bility.  

OPERATIONAL ARCHITECTONICS OF BRAIN-
MIND FUNCTIONING  

 The initial idea on the frame architecture of brain infor-
mation processing in rather sketchy form has been originally 
proposed at the fourth IBRO World Congress of Neurosci-
ence [29] (see also Ref. [30] for a more general presenta-
tion). Later it was used mostly as an “umbrella” notion in a 
series of research [23,24,31-49] leading to accumulation of 
enormous amount of experimental data which permitted to 
extensively develop, broaden, and modify the whole concep-
tion and establish OA as a theoretical framework in the pre-
sent form [7,9,14,27,28]. Since then, it has been used to 
study (a) different brain conditions, such as during cognitive 
tasks [50], memory [44,51], multi-sensory integration [43], 

during sleep and drowsy states [36, 52], under the hypnosis 
[53]; (b) different pathological conditions, such as depres-
sion [54], opioid addiction [55], abstinence [56], schizophre-
nia [57]; and under the pharmacological influence [45,46]. 
However, despite a lot of empirical studies, the methodo-
logical aspects of this approach have been not addressed in a 
systematic way. 

 Prior to detail analysis of methodological issues we 
would like briefly describe the main upper-level aspects of 
OA framework and their relation to EEG. The basic idea is 
that the activity of neuronal assemblies (that form the foun-
dation of OA theory) is “hidden” in the complex nonstation-
ary structure of brain EEG field [8,9]. The main OA postu-
lates are:  

1) Single neurons (highly distributed along the cortex) 
can quickly become associated (or dis-associated) by 
synchronizing their activity/operations and giving rise 
to transient neuronal assemblies (TNA). TNAs main-
tain discrete elemental brain operations some of 
which have phenomenal/subjective ontology in addi-
tion to the neuro-physiological one [9].  

 At the EEG level these operations of the TNAs are 
reflected in the periods of the EEG quasi-stationary 
segments (~ milliseconds) within different frequency 
ranges, registered from different brain locations. The 
rapid transition processes (RTP) occurring in the 
continuous EEG activity mark the boundaries be-
tween quasi-stationary segments for this activity (Fig. 
1). Detail description of this method can be found in 
Fingelkurts et al. [45,46] and Kaplan et al. [22]. It is 
assumed that each homogenous segment within a par-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). An example of four ongoing EEG channels with rapid transition periods (RTPs) and the schematic representation of one channel 

(O1) and RTPs (Note that after statistical verification of preliminary RTPs some of these RTPs do not present among actual RTPs). EEG was 

registered in resting condition (closed eyes) and then filtered in the alpha frequency band (7-13 Hz). 
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ticular EEG frequency band corresponds to a tempo-
rary stable microstate in the local brain’s activity, i.e. 
an operation [14,27]. Because the major contributor 
to temporal modulation of the variance and power of 
the EEG signal is the sharp change in its amplitude 
[58], the identification of RTP can be reduced to the 
detection of a moment of rapid statistically significant 
decrease or increase of EEG amplitude. 

 The identification and statistical approval of a se-
quence of RTPs (RTPseg tool; BM-Science, Finland) 
is used for automatic segmentation of the EEG re-
cords (for detail description see Ref. [54]). Here we 
are highlighting only the most important aspects (Fig. 
1). The RTPseg method is based on the automatic al-
gorithm of moving double window screening. The 
ongoing amplitude values in the test window are 
compared with amplitude values averaged in the level 
window (test window << level window). If, in accord 
with the given level of probability of false alert, the 
value averaged in the level window is exceeded by 
the highest among the test window value, the time 
point with the highest amplitude is considered as a 
preliminary RTP. In order to exclude false alerts 

caused by anomalous peaks in amplitude, another 
condition must be fulfilled: the statistically significant 
difference must be detected between an amplitude 
value averaged across five time points following the 
preliminary RTP and the amplitude value averaged 
across the level window. If these two criteria are met, 
the RTP is considered as actual. Thereafter, both win-
dows are shifted from this RTP on one time-point, 
and the procedure is repeated until the whole se-
quence of statistically proven RTPs is determined 
[22,43,44]. 

 The identified quasi-stationary segments of EEG ac-
tivity are characterized by the following attributes 
[50,46]: A (mV) – averaged across segment ampli-
tude value (reflects the size of TNAs), V (%) – coef-
ficient of variation of within-segmental amplitude 
values (reflects stability of synchronization within 
TNAs), L (ms) – length of segment (reflects duration 
of separate brain operations performed by TNAs), AR 
(%) – amplitude relation among adjacent segments 
(reflects either growth (recruiting of new neurons) or 
distraction (functional elimination of neurons) of 
TNAs), and S (%) – steepness of RTP among adja-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). EEG Index of Structural Synchrony. A: Technical estimation of OM. B: Illustration of brain Operational Space-Time (OST). Each 

OM exists in the OST, which is “blind” to other possible time and space scales present simultaneously in the brain. In the other words, all 

neural assemblies that do not contribute to a particular OM are temporarily and spatially excluded from the current OST. 
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cent segments (reflects the speed of neuronal popula-
tion growth or distraction). These attributes reflect 
different aspects of local processes in the cortex and 
thus permit assessing the mesolevel description of 
cortex interactions (interactions within TNAs) 
through large-scale EEG estimates [46]. 

2) Temporal synchronization of different brain opera-
tions executed by different local TNAs simultane-
ously (operational synchrony) gives rise to a new 
level of brain abstractness – metastable brain states 
[7]. These metastable brain states or functional Op-
erational Modules (OM), as we name them, underlie 
the realization of brain complex macrooperations: 
cognitive percepts, phenomenal objects, and reflec-
tive thoughts within the operational space-time con-
tinuum [14]. Intuitively, the operational space-time 
(OST) is the abstract space and time which is “con-
structed” by the brain each time when the particular 
metastable OM emerges [28]. Formally, the OST 
means that for a particular complex operation, the 
spatial distribution of the neuronal assemblies’ loca-
tions with synchronous activity at repetitive instants 
of time (beginnings and ends of simple operations) 
builds the OM. These distributed locations of neu-
ronal assemblies are discrete and their proximity or 
the activity in the in-between area, delimited by the 
known locations, is not considered in the definition 
(only the exact locations are relevant). Also, between 
the moments in time that particular locations of the 
neuronal assemblies synchronize, there can be smaller 
subset(s) of these locations synchronized between 
themselves or with other neural locations, though 
these do not relate to the same space-time of the same 
OM. The sketch of this general idea is presented in 
Fig. (2B). Each OM is metastable spatial-temporal 
pattern of brain activity, because the neuronal assem-
blies which constitute it have different opera-
tions/functions and each does its own inherent “job” 
(thus expressing the autonomous tendency), while 
still at the same time been temporally entangled 
among each other (and thus expressing the coordi-
nated activity) in order to execute common complex 
operation or cognitive act of a higher hierarchy 
[14,28]. As has been proposed by Kelso [3] metasta-
bility relates exactly to the constant interplay between 
these autonomous and interdependent tendencies (see 
also Ref. [59,60]). 

 At the EEG level the OM phenomenon is expressed 
in the synchronization of EEG quasi-stationary seg-
ments (indexed by Structural Synchrony, ISS) ob-
tained from different brain locations [9,14] and meas-
ured by means of RTPsyn tool (BM-Science, Fin-
land). As the details of this technique are beyond the 
scope of this article (see [54]), we will only concen-
trate on some essential aspects. The criterion for de-
fining an OM is a sequence of the same synchrocom-
plexes (SC), whereas SC is a set of EEG channels in 
which each channel forms a paired combination with 
high values of ISS with all other EEG channels in the 
same SC; meaning that all pairs of channels in an SC 
have to have statistically significant ISS (Fig. 2A). 
RTP in the reference EEG channel (the channel with 

the minimal number of RTPs from any pair of EEG 
channels) is surrounded by a short “window” (ms). 
Any RTP from another (test) EEG channel is consid-
ered to coincide if it fell within this window (Fig. 
2A). The ISS for pairs of EEG channels can be esti-
mated using this procedure and a particular mathe-
matical formalism (for details, see Ref. [22,43,44]). 
The ISS tends towards zero where there is no syn-
chronization between the EEG segments and has 
positive or negative values where such synchroniza-
tion exists. Positive values indicate ‘active’ coupling 
of EEG segments (synchronization of EEG segments 
is observed significantly more often than expected by 
chance as a result of random shuffling during com-
puter simulation), whereas negative values mark ‘ac-
tive’ decoupling of segments (synchronization of 
EEG segments is observed significantly less than ex-
pected by chance as a result of random shuffling dur-
ing computer simulation). 

3) Sequence of these metastable OMs may represent the 
stream of consciousness [9]. The main idea is that the 
structure of the electrical brain field (EEG), the struc-
ture of cognition, and the phenomenal structure of 
consciousness, all have the same organization (Fig. 
3): the succession of discrete and relatively stable pe-
riods (metastable OMs, cognitive acts, or thoughts, 
correspondingly) separated by rapid transitive proc-
esses (abrupt changes between OMs, cognitive acts or 
thoughts, correspondingly). 

4) OMs could be operationally synchronized between 
each other on a new time scale (see Fig. 3A), thus 
forming more abstract and more complex OM which 
constitute new and more integrated phenomenal expe-
rience [28]. 

5) Also the reverse process is possible: when complex 
OM (representing phenomenal pattern, object, or re-
flective thought) guided by attention is decomposed 
to several simpler OMs which in their turn may be 
further decomposed even to simpler ones [27].  

METHODOLOGICAL ASPECTS 

Adaptive Level EEG Segmentation 

 It is well known that EEG signal is extremely nonsta-
tionary [8,22,23]. The understanding of the nonstationary 
structure of EEG signal is of intrinsic scientific importance 
because without understanding the character (or nature) of 
the processes under consideration, the use of many methods 
of analysis often gives false results. For example, invariants, 
such as the mean spectrum, average ERP and ERD/ERS, 
coherency, fractal dimensions, Lyapunov exponents, and 
others, have a sense only for stationary signal dynamics 
[61]. Further, the nonstationarity of the EEG process usually 
does not allow constructing a global dynamical model for the 
whole observable [62]. 

 Thus, regardless of how powerful or statistically signifi-
cant the different estimations of averaged EEG phenomena 
may be, there might be difficulties in the meaningful inter-
pretation of these if they are not matched to their piecewise 
stationary structure [63-65]. That is why the algorithms 
based on a nonstationary model of the EEG signal are of a 
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particular importance [22]. However, the conventional para-
metric (and some other) segmentation procedures [66-68] 
contain internal controversies and thus have limitations. The 
main such limitation is that segmentation of the EEG signal 
into stationary fragments is impossible without construction 
of an adequate mathematical model, but such a model cannot 
be built without previous segmentation, since it requires the 
stationarity for its construction (for detailed discussion and 
review see Ref. [22], see also [47,48]). To overcome such 
disadvantages the original framework of the adaptive non-
parametric EEG segmentation (together with a correspond-
ing tool-set) was developed. The latest tool (RTPseg; BM-
Science, Finland) of the framework’s toolset is used for the 
purpose (see Fig. 1). This tool is an advanced clean reim-
plementation of a earlier tool Section [22,43,44]. RTPseg 
algorithms overcome various numerical limitations that ex-
isted in its predecessor and modify and extend its functional-
ity. 

 In the adopted framework of OA methodology, it is as-
sumed that the EEG signal is “glued” from several segments 
of random stationary processes with different probabilistic 
characteristics [48]. In this case, it is possible to consider one 
quasi-stationary segment as the single event in EEG-
phenomenology (Fig. 1). Within the duration of one seg-

ment, the neuronal population that generates the oscillations 
is in the steady quasi-stationary state [47]. The transition 
from one segment to another reflects the changes of the gen-
erator system state or changes in the activity of the two or 
more systems [66-68]. These transitions (rapid transitional 
processes – RTP) in the EEG amplitude occurred abruptly 
and are the boundaries between EEG segments (or brain op-
erations at the functional level; for discussion see Ref. 
[14,27,28]). RTP is supposed to be of minor length com-
pared to the quasi-stationary segments (Fig. 1), and, there-
fore, can be treated as a point or near-point [9]. Generally, in 
the rest condition there may be about 400-600 RTPs per 1-
min EEG recording, while during cognitive task this number 
usually increases and could reach up to 12000 RTPs per 1-
min EEG recording [40]. 

 There are few methodological issues, however, regarding 
the nature of EEG segments that need to be addressed with a 
more detail. One such issue concerns the validity of RTPs as 
real markers of the boundaries of quasi-stationary EEG seg-
ments. If RTPs are true authentic boundaries of EEG quasi-
stationary segments, then the coefficient of within-segment 
amplitude variability (V) should be substantially higher for 
the randomly (stochastically) altered EEG when compared 
with the real (actual) one. Using the procedure of random 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Isomorphism between functional structures of electrical brain field (EEG), cognition, and phenomenological consciousness (reflec-

tive thought). A: At the EEG level dynamic structure is presented as a chain of periods of short-term metastable states (or operational mod-

ules, OM) of the individual brain subsystems (grey shapes), when the numbers of degrees of freedom of the neuronal assemblies are maxi-

mally decreased. Red out-lined shapes (in the on-line version) illustrate complex OMs which are separated by the rapid transition periods 

(RTPs). B: Changes from one cognitive act to another are achieved through RTPs. Change from one cognitive (and behavioral) act to another 

is reflected in transitional processes which play the principal role in the organization of cognition. During transitional process the comparison 

with the parameters of the final result reveals the correspondence between the achieved ‘goal’ and the ‘goal’ that was planned [129]. C: Phe-

nomenological level illustrates the ever-changing stream of thoughts (or mental images) where each momentarily stable pattern is separated 

by transitive fringes (or RTPs). Consciousness is always changing, but it presents us with a series of substantive thoughts that are themselves 

momentarily stable [130]. Generally, the description of the cognitive and phenomenological continuum as a chain of the discrete acts (the 

results of which are achieved due to the simultaneous realization of certain number of operations) coincides with the description of the opera-

tional architectonics of the biopotential brain field. 
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mixing of amplitude values within EEG signal, the relative V 
values for stochastic amplitude alternations were estimated 
for each EEG channel and the result was compared with V 
values of real (normal) EEG [22]. The V values of the mixed 
(‘random’) EEG were substantially higher (up to 30%) when 
compared with the actual EEG. Such an excessive increase 
in the V values indicates a stochastic processes going in 
‘random’ EEG. More precisely, these values represent an 
estimation of the maximum possible rate of relative altera-
tions in the amplitude variability for a given EEG. 

 Additionally, if RTPs are true authentic boundaries of 
EEG quasi-stationary segments, then the coefficient of 
within-segment amplitude relations between neighboring 
EEG segments (AR) should be substantially lower for the 
randomly (stochastically) altered EEG when compared with 
the real EEG. The analysis indicated that it is indeed the case 
[49]. Thus, both these tests testify the fact that obtained seg-
ments in the actual EEG really have a quasi-stationary nature 
and reflect the episodes of relative stabilization of neuronal 
activity within separate neuronal assemblies separated by 
RTPs. 

 Application of OA methodology in cognitive experimen-
tal design reveals indeed a functional significance of seg-
mental EEG architectonics during both spontaneous (stimu-
lus independent) and induced (stimulus dependent) brain 
activity [23,32,40-44,53]. 

 However, there is one more important issue to consider 
in respect to the nature of RTP: if RTPs are the EEG markers 
of transitional moments between brain operations (which 
indicate the beginning and end of operations), than, in the 
experimental condition, the number of RTPs should be much 

higher exactly at the moment of systematic change from one 
cognitive/mental operation to another when compared with 
other time-coordinates or control condition without system-
atic change of operations. Fig. (4) presents a distribution of 
time coordinates of RTPs for the three-stage cognitive task 
and rest condition. As one can see, distribution of RTPs’ 
time coordinates is not homogeneous during three-stage (20 
sec each) cognitive task. 

 Main peak in the number of RTPs (10-11%) occurred on 
19-20 sec – exactly at that moment where was abrupt transi-
tion from the 1st stage of cognitive activity to the 2nd one. 
This increase in the number of RTPs was statistically signifi-
cant [41]. Transition from the 2nd stage of cognitive activity 
to the 3rd was also marked by slight increase in the number 
of RTPs, however without reaching a significant level (Fig. 
4). It is important to note here, that second stage of cognitive 
activity was very different from the first one, but was almost 
identical to third stage [40]. Therefore, the number of RTPs 
reflects accurately a systematic change in cognitive opera-
tions. In contrast to experimental condition, control condi-
tion, which was just rest with open eyes, was characterized 
by relatively homogenous distribution of RTPs’ time coordi-
nates (Fig. 4). These findings clearly indicate that RTPs are 
true markers of beginnings and ends of brain-mind opera-
tions.  

EEG Segmental Synchrony as a Measure of Brain Func-
tional Connectivity  

 Traditionally coherence and correlation [69] has been the 
main methods to assess the degree of functional connectivity 
between brain areas [14]. It is interesting that initial idea, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Diagram of time coordinates of rapid transitional periods (RTP) found in different EEG channels for 1-min EEG averaged across all 

subjects (n = 12), all EEGs (n = 48 for Control condition and n = 131 for Cognitive task) and all EEG channels (n = 8). Explanations are in 

the text. 
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advocating the correlation approaches as an attempt to quan-
titatively describe the relationship in the activity of cortical 
areas, has gradually transformed into the postulation of the 
presence of an “interrelation” between different sections of 
the brain only in the case of a high significance of crosscor-
relation and coherency [70]. However, in a strict sense, the 
coherence value indicates only the linear statistical link be-
tween EEG curves in a frequency band [71]. Meanwhile, it is 
obvious that, in general, the absence of similar types of sta-
tistical interrelation between two processes does not mean 
the absence of any interaction between them at all (for a 
critical discussion see Ref. [23,32,71]). Show and Simpson 
[72] also stressed that one must be careful about interpreting 
coherence (including partial coherence) as an indicator of 
functional connectivity and pointed out that EEG signals 
show a finite correlation even when recorded from separate 
subjects [70]. 

 Recently several new methods for detecting functional 
connectivity between cortical areas have been published: 
partial directed coherence [73], dynamic imaging of coherent 
sources [74], and phase synchrony based on wavelet [75] or 
Hilbert [76] transforms. However, all these methods have 
some limitations. The drawback is that these approaches 
have one or several of the following: they do not take into 
consideration the nonstationary nature of the data, require 
long time epochs of analysis, use averaging and smoothing 
procedures and linear models, which for the brain is not 
typically the case [61]. For the phase concept to be utilized 
the frequencies of the signal should be locked, otherwise 
multiple harmonics of these frequencies may overlap and 
lead to ambiguous phase information [77]. Further, the con-
cept of phase synchronization can be applied only to homo-
geneous medium [78], what is an unrealistic assumption for 
the brain. Additionally, the situation is complicated also by a 
nonstationary process in the nonlinear phase (de)synchro-
nization measures [79], see also [15]. 

 To overcome the previously mentioned and many other 
disadvantages, the original framework for estimation of 
functional brain connectivity – based on the index of EEG 
structural synchrony (ISS) – was developed (Fig. 2). The 
latest tool (RTPsyn; BM-Science, Finland) of the frame-
work’s toolset is used for the purpose. This tool is an ad-
vanced clean reimplementation of an earlier tool Jumpsyn 
[22,43,44]. RTPsyn algorithms overcome various numerical 
limitations of the preceding tool, modifying and extending 
its functionality. 

 However, one may question the validity of this structural 
(or operational) synchrony measure (ISS) as a measure of 
“synchronization”. The ISS measure is based on the co-
occurrence of RTPs between two (or more) EEG channels 
within the same small time-window, while in physics and 
mathematics literature “synchronization” is usually defined 
as ongoing one-to-one functional relationship between two 
(or more) systems. Hence the usage of term “synchroniza-
tion” may be not appropriate. 

 The ISS utilizes explicitly the definition of the inter-area 
functional connectivity [15,32], which has been agreed upon 
in the neuroimaging community. According to this agree-
ment [80], functional connectivity is defined as the temporal 
correlation between spatially remote neurophysiological 
events [81]. Consistently with this the ISS reflects estimated 

periods of the mutual temporal stabilization of quasi-
stationary segments (spatially remote events) in the mul-
tichannel EEG [15]. This implies that, although different 
neuronal assemblies located in different cortical regions have 
different anatomical features and superficially appear to have 
quite different sets of firing states [82] – segregation ten-
dency, they can indeed share, encode, or decode the same 
information using their own specific anatomy and physiol-
ogy to develop their own sets of microstates [83] wile still be 
related to each other by simultaneous rapid transformations – 
integration tendency [7,9,14,28]. Such coexistence of inte-
grated and segregated tendencies is called metastability [2,3]. 

 The main principle of OA methodology, thus, lies in the 
moment-by-moment metastable synchronization of the on-
going TNAs operations among different cortical areas of the 
large-scale neuronal networks (for reviews, see Ref. 
[7,14,23,28,59]). Thus, the ISS index reflects systematic 
temporal relationship between the activities in different cor-
tical areas (Fig. 2) – synchronization of brain operations 
(events), which is the essence of functional connectivity (for 
a review, see Ref. [15]). 

 This method is very simple conceptually and can be used 
for any time-series in which we can define events. In princi-
ple, when dealing with signals of different character, the 
events could be defined differently in each time series, since 
their common cause might manifest itself differently in each 
time-series (for similar ideas, see Ref. [84]). Since the events 
in the OA framework are the rapid transitional processes 
(RTPs) which have some duration (even though very small), 
their synchronization is estimated between different EEG 
channels in some time window to capture the temporal dura-
tion of these processes. The ISS values have get significant 
meaning only if there is systematic temporal relationship 
between two (and more) EEG signals and this relationship is 
deferent from stochastic level of ISS (ISSstoh). 

 To arrive at a direct estimate at the 5% level of statistical 
significance (P < 0.05) of the ISS, computer simulation of 
RTPs synchronization is undertaken based on random shuf-
fling of time segments marked by RTPs (500 independent 
trials). These share the properties of the experimental data 
(number of RTPs in each EEG channel of analyzed pair, 
number of segments, and number of windows of synchroni-
zation), but the time coordinates of RTPs were altered ran-
domly in each trial so as to destroy the natural temporal 
structure of the data. Generally, repeated random reshuffling 
of the observed data may lead to a whitening phenomenon 
[85]. However, in the case of ISS this is unlikely due to the 
following reasons. The correlation between consecutive time 
segments marked by RTPs in the raw time series is generally 
small even if the EEG signal itself is highly autocorrelated in 
time (see the following section). Moreover, validation of the 
stochastic level of RTPs coupling was performed on so-
called ‘surrogate’ EEGs [40] in which a mixing of actual 
EEG channels was done in such a way that each channel was 
recorded in a different time, so that the natural time relations 
between channels in such multichannel EEG were com-
pletely destroyed. However, the number and the sequence of 
segments within each channel remained the same as in the 
actual EEG. The values for stochastic level of RTPs coupling 
were almost the same in both procedures and were equal to 
zero. Thus, the approach of random shuffling of EEG seg-
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ments is justified. However, other approaches are also possi-
ble (see for example Ref. [85]). 

 As a result of this procedure, the stochastic level of RTP 
coupling (ISSstoh), and the upper and lower thresholds of 
ISSstoh significance (5%) are calculated. Thus, only those 
values of ISS that exceed the upper (active coupling) and 
lower (active decoupling) thresholds of ISSstoh have been 
assumed to be statistically valid (P < 0.05). The ISS tends 
toward zero where there is no synchronization between the 
EEG segments, or has positive or negative values where such 
synchronization exists (Fig. 5). Positive values indicate ‘ac-
tive’ coupling of EEG segments (synchronization of EEG 
segments is observed significantly more often than expected 
by chance), whereas negative values mark ‘active’ decou-
pling of segments (synchronization of EEG segments is ob-
served significantly less than expected by chance). 

 The above description of EEG structural synchrony 
measure and its relation to functional connectivity and un-
derlying neural substrate satisfies the main requirements of 
Horwitz [80] for the usage of functional connectivity con-
cept. Even though generally the measure of functional con-
nectivity does not require any model [86], we believe that to 
go further in the interpretation of experimental data, com-
puter modeling of OA framework has to be assessed in the 
future. 

ISS Reshuffling Procedure Validation  

 The method of reshuffling EEG segments to generate full 
EEG recordings under the null hypothesis solves the problem 
of specifying a sampling distribution when the law of the 
time length of EEG segments is not known. But this method 
has an implicit assumption: the independence (or lack of 
autocorrelation) between the length of each segment (i.e. the 
length of segment n should not be correlated with the length 
of segment n-1). The presence of autocorrelation will lead to 
an excess of falsely described connections. 

 The Fig. (6) presents two samples of autocorrelation for 
lengths of EEG segments obtained from the occipital (O1) 

and frontal (F4) cortical areas during 20 min of EEG record-
ing (for one subject). Even though there is small decrease of 
correlations with increasing lag, it never reaches statistically 
significant level and thus should be considered as irrelevant. 
Note that with the exception of lag 0, which is always 1 by 
definition, all other autocorrelations fall below the 95% con-
fidence limit. Thus, we may conclude that adjacent lengths 
of EEG segments (defined by RTPs) do not co-relate signifi-
cantly. However, this result should be regarded as a prelimi-
nary test, considering that strictly speaking, the use of the 
autocorrelation function for this purpose is not absolutely 
correct, because (a) the key assumption underlying such sta-
tistical analysis is the “stationarity” of the registered signal, 
while the EEG is a highly nonstationary signal [9,22]; (b) the 
lengths of EEG segments (observations) are not equispaced; 
although the time variable is not used in the formula for 
autocorrelation, the assumption is that the observations are 
equispaced; and (c) the sequence of EEG segment lengths 
does not strictly correspond to the time series. 

 Besides the limitations mentioned above, the number of 
theoretical considerations (based on experimental results) 
supports the fact that different segments of EEG should be 
relatively independent: each of these quasi-stationary seg-
ments is formed by a random stationary process with particu-
lar probabilistic characteristics which remain relatively con-
stant within a segment and which changed abruptly from one 
segment to another [83] (for review, see Ref. [23,48]). The 
transition from one segment to another reflects changes in 
the generator system state or changes in the activity of the 
two or more systems [23,37,47]. Therefore, in either case, 
we may conclude that adjacent lengths of EEG segments do 
not correlate. 

ISS and Normalized Version of ISS  

 Although being quite informative, the ISS will be de-
pendent on the global density of RTPs in the analyzed EEG 
epoch even under no real connectivity between EEG chan-
nels. Therefore one may think that it might be desirable to 
develop or improve the ISS to a normalized version. 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. (5). Schematic illustration of the index of structural synchrony (ISS) and its stochastic levels. As an example, the calculations of ISS are 

shown for 16 EEG channels. The Y-axis displays the ISS values found in the experiment (illustrated as bars). The X-axis displays the 120 

possible pair combinations of 16 EEG channels (1 = O1-O2, 2 = O1-P3, 3 = O1-P4, … 118 = Fz-F7, 119 = Fz-F8, 120 = F7-F8). The data 

presented for a healthy subject in rest condition, eyes closed. Figure is modified from the Fingelkurts et al. 2004, Human Brain Mapping
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 The normalized version of ISS (ISSn) can be easily cal-
culated. Fig. (7) presents comparison of the ISS and ISSn 
values. It is obvious that both indices lead to the same quali-
tative results (Fig. 7). The coefficient of correlation between 
ISS and ISSn equals 1 (P < 0.0001). This equality revealed 
an important feature of the synchronization index based on 
RTP coupling: the ISS measure is already normalized since 
the parameters of the formula take into account the global 
density of RTPs in each EEG channel within the analyzed 
EEG epoch. 

 The only difference between ISS and ISSn measures is 
the significantly lower values for ISSn (Fig. 7). This is pre-
cisely why it is recommended to use the ISS index: the 
higher values give more room for their variability; and this is 
an important attribute of any index to be used in practical 
experiments, when one needs to distinguish statistically be-
tween two (or more) conditions. 

Stability of ISS  

 There may be a reasonable question on whether this new 
type of EEG synchronization is genuine and not just an arti-
fact of the ISS method. One may think that the best approach 
to test this is through measure EEG synchronization in sev-
eral different ways and show that the increased (or de-
creased) functional connections are indeed robust. 

 It is well established (for discussion, see relatively recent 
paper of Horwitz [80]) that multiple ways by which func-
tional connectivity can be determined may lead to different 
conclusions about whether two brain units are strongly inter-
acting with one another. For example, it has been shown that 
the value of EEG coherence can be low even when the 
phases of two EEG channels are synchronized [75]. Most 

likely, different measures of functional connectivity are not 
related to one another in any kind of simple way and sensi-
tive to different aspects of interregional interactions. Thus, 
comparisons of functional connectivity from different meas-
ures are not trivial and should be done with caution [80]. 

 In this sense, the best way to obtain the robustness of ISS 
measure is to check ISS values on homogeneity. Homogene-
ity means that the rules governing the changes in ISS values 
are the same throughout the whole experiment(s). Testing 
may be accomplished by several ways: when subjects un-
derwent the same experiment with the same instructions 
twice (the test-retest reliabilities); by splitting a whole EEG 
data into two or more parts and analyzing these separately; 
or by using a double-blind, randomized, cross-over study. 
Here we will describe the results of splitting test of ISS data. 
The question on which we are going to answer is whether the 
ISS values characterize the majority of the trials analyzed? If 
this true, the homogeneity of ISS data should be obtained. 
By definition, homogeneity can be assumed when all sub-
parts of the data and the total data yield the same result [87]. 
This would mean that the data is robust and that they are not 
the artifact of the method. 

 The ISS profiles for pair-wise coupling (120 possible pair 
combinations available from the 16 EEG channels) were 
estimated and compared for five, ten, twenty, and sixty sec-
onds of the same EEG (for a particular and always the same 
stage of a memory task; see Ref. [44]). The ISSstoh and its 
upper/lower thresholds (distribution of ISSstoh values) were 
estimated also (see above). 

 Fig. (8) illustrates this analysis. One can see that the no-
ticeable profile of ISS values already exists at 5-s EEG inter-
val, and that this profile remains almost identical to the pro-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Two samples of autocorrelation for lengths of EEG segments obtained from occipital (O1) and frontal (F4) cortical areas during 20 

min of EEG recording (1 subject). Y-axis, Autocorrelation coefficients; X-axis, Time shift/lag (1, 2, 3, ...). Horizontal doted lines indicate the 

95% confidence level. Figure is modified from Fingelkurts et al., 2007, Human Brain Mapping
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file of ISS values for the whole 60-s EEG interval (which 
corresponds to sum of all trials of the same stage of a mem-
ory task). The main positive peaks (which correspond to 
concrete EEG pair combinations) coincide precisely in the 5-
s and 60-s EEG ISS profiles (Fig. 8). Although we cannot be 
sure about the statistical significance of all ISS values in 5-s 
profile, because many of them lay inside the threshold of 
ISSstoh, it is important that the main peaks of the ISS profile 
for 5-s EEG intervals coincide precisely with the main peaks 
of 60-s EEG intervals (where they all reach statistical sig-
nificance). 

 The values of the ISS profile for the 10-s EEG interval 
are already more stable (statistically) and majority of main 
peaks reach the level of statistical significance (Fig. 8). Ad-
ditionally, one can see that the first, second, and third 20-s 
EEG intervals do not differ from each other significantly 
(correlation coefficient: CC = 0.97, P < 0.05 for I-II; CC = 
0.87, P < 0.05 for I-III; CC = 0.81, P < 0.05 for II-III) and 
are very similar to the whole 60-s EEG ISS profile (CC = 
0.84, P < 0.05). Moreover, all pair combinations which ex-
ceeded the stochastic threshold are the same for each of 20-s 
EEG intervals as well as for the whole 60-s EEG epoch (Fig. 
8). 

 Thus, results obtained in this analysis show that the func-
tional connectivity between EEG channels is stable and 
characterizes the vast majority of the analyzed trials. The 
evidence became stronger if we take into consideration the 
results of analysis of the 20-s EEG interval, which was arti-
ficially constructed from 1-s EEG intervals taken 20 times 

randomly during the 60-s EEGs belonging to the same stage 
of memory task (see Fig. 8). The values of such ISS profile 
are very similar to any other 20-s EEG ISS profile (CC = 
0.88, P < 0.05; CC = 0.92, P < 0.05; CC = 0.81, P < 0.05; 
correspondingly to I, II and III 20-s EEG intervals) and al-
most the same as the analogous values of ISS profile for the 
60-s EEG (CC = 0.78, P < 0.05). At least all peaks, which 
exceeded the threshold of analysis, coincide precisely (Fig. 
8). 

 Thus, the splitting-test reliabilities (estimated by CC) of 
the ISS values between the different parts of data were very 
high; and this confirms the validity of the functional connec-
tivity estimated by ISS. Reliability measures minimize both 
Type I and Type II errors and eliminate the need for multiple 
comparisons correction because by definition chance find-
ings do not replicate [88]. 

EEG Epochs and ISS  

 Prior to estimation of ISS, each individual EEG recording 
is arbitrarily divided into number of epochs of a particular 
duration. There are two potentially important issues here to 
consider. First, are the different n-min EEGs from the same 
individuals as different as n-min EEGs from different indi-
viduals? If not, then such EEGs cannot be considered as a 
sample of independent observations, and the Wilcoxon test 
to asses the differences between experimental groups is not 
the best choice. Second, the division into n-min epochs is 
arbitrary; depending of the epoch length used, the degrees of 
freedom available to the Wilcoxon test will vary, as will 
probably the results as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Schematic illustration of index of structural synchrony (ISS) and its normalized version (ISSn) with each own stochastic levels. As 

an example, the calculations of ISS and ISSn are shown for 16 EEG channels. The Y-axis displays the ISS and ISSn values found in the ex-

periment. The X-axis displays the 120 possible pair combinations for 16 EEG channels (1 = O1-O2, 2 = O1-P3, 3 = O1-P4, … 118 = Fz-F7, 

119 = Fz-F8, 120 = F7-F8). ISSz indicates the stochastic mean values of structural synchrony obtained during the computer simulations; 

min/max ISSz indicate the stochastic levels for ISSz; normalized min/max ISSnz indicate the stochastic levels for the normalized ISSnz. A 

line representation was chosen instead of bars for ease of comparison. Figure is modified from Fingelkurts et al., 2007, Human Brain Map-

ping
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 Statistically, different epochs of ongoing EEG within one 
subject may be considered as independent observations 
(imagine that we made 10 independent 1-min EEG record-
ings) since they are not coupled to any particular internal 
physiological processes and/or external stimuli. Physiologi-
cally, the EEG epochs from the same subject are, naturally, 
more dependent than epochs from different subjects. This is 
the general problem of practically all EEG studies. However, 
the question is: whether the difference in variability of EEGs 
from the same and between different subjects is significant. 
The most general parameter which describes EEG is its 
power spectrum.  

 Unfortunately, the averaged power spectrum which is 
used in most of EEG research is prone to many limitations 
and presents at most a virtual estimate [89]. To assess the 
appropriateness of the general description of 1-min EEG 
epochs, we calculated the probability-classification profiles 
(PCP) of short-term spectral patterns (method described in 
Ref. [90]) and compared them within and across the subjects 
for the same condition. To assess stability of this measure-
ment during each 1-min EEG epoch within each subject and 
across subjects, we calculated the coefficient of variability 
(CV = standard deviation / mean) as a first measure of stabil-
ity for averaged PCPs across all 1-min EEGs separately for 
each channel for each subject and for all subjects together. 
Further, data were averaged across all EEG channels for 
each subject and for the group of all subjects. PCP was pre-
sented as the histogram of the relative presence of each spec-
tral pattern type for a particular EEG [90]. Analysis of all 
PCPs for all subjects revealed that EEGs of all subjects were 
dominated by alpha activity (spectral pattern had dominant 

peak around 10 Hz) for the same condition. The coefficient 
of variability demonstrated that this type of activity was sta-
ble (a) within each subject (CV ranged from 0.4 to 0.6 for 
different subjects) and (b) across the subjects (CV = 0.6). 
Although EEGs within subjects were somewhat more similar 
to each other than across subjects, the interindividual vari-
ability was only insignificantly higher, and was still rela-
tively low. Thus, stability of EEGs within and between sub-
jects was very similar for the same condition. These facts 
justify the pulling of all data together and the analysis of all 
1-min EEGs in the common pool. The same is true for any n-
time EEG epoch. 

 The division of the EEG into relatively small 1-min in-
tervals provides a relatively large number of analyzed ep-
ochs; it is important that an unbiased estimate of the syn-
chronicity index is computed using enough data samples. 
Such an approach is justified because there are no fixed posi-
tions in the EEG, and one can therefore divide it into any 
number of epochs with a length appropriate for the particular 
experiment and analysis.  

 In previous section it has been shown that the reliable 
synchronicity profile already exists at 5-sec EEG intervals, 
and remains almost the same as for the whole 1-min EEG. 
The first, second, and third 20-sec intervals of the 1-min 
EEG did not differ from each other significantly and also 
strongly resembled the whole 1-min EEG profile. These re-
sults showed that the functional relationships between EEG 
recordings are stable and do not dependent on the analyzed 
epoch (beyond 5-sec). An increase of EEG epoch beyond the 
1-min interval does not lead to any changes in the synchro-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Index of structural synchrony (ISS) of cortical alpha activity for different time intervals. The Y-axis displays the ISS values. The X-

axis displays the 120 possible pair combinations of 16 EEG channels (1 = O1-O2, 2 = O1-P3, 3 = O1-P4, … 118 = Fz-F7, 119 = Fz-F8, 120 

= F7-F8). A line representation was chosen instead of bars for ease of comparison. Explanations are located in the text. Figure is modified 

from Fingelkurts et al., 2003, NeuroImage
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nicity profile [40]. Therefore, the results of ISS measure do 
not significantly depend on the epoch of EEG analysis. 

Problem of Multiple Comparisons and ISS  

 Separate computer maps of the ISS values are created for 
each subject and for each n-min EEG epoch of analysis. The 
problem of multiple comparisons between maps cannot eas-
ily be overcome due to the large number of possible pairs of 
functional connections [91]. This problem is common to all 
studies that require multiple comparisons between maps 
[92,93]. To ensure valid results, the pairs of functional con-
nections considered relevant for the further analysis if they 
consistently appeared in most of the analyzed EEG epochs 
and subjects (85-100%) for the same experimental group (or 
condition). However, the question remains whether a fre-
quency of appearance higher than 85% will depend on the 
potential effect of multiple comparisons. 

 Simple calculations enable us to clarify the situation. In 
most of studies 20 EEG derivations are used. We will use 
this number as an example. If there are 20 EEG channels, 
then in total there should be (20*20-20)/2 = 190 pairs of 
combinations of EEG channels (electrodes). Thus, we can 
expect 190*0.05 = 9.5 false positives (on average) for each 
single n-min EEG analyzed under the null hypothesis (where 
0.05 is the significance level). Based on these calculations, it 
is rather improbable that, a false-positive functional connec-
tion will emerge by chance 85% of the time.  

 Therefore, the level of frequency higher than 85% is ap-
propriate. However, this conclusion relies on the following 
two assumptions: a) the nominal 0.05 is correct (so it is cru-
cial that no significant autocorrelation exists between the 
lengths of EEG segments) and b) the n-min EEG epochs 
within individuals are as different as those between individu-
als. As it was shown in previous sections, these two assump-

tions are valid. Thus, we may conclude that with the thresh-
old of 85% there is no need for multiple comparison correc-
tion. 

Problem of Volume Conduction and ISS  

 It is often claimed that volume conduction is the main 
obstacle in interpreting EEG data in terms of brain connec-
tivity [94]. Although many methods for estimation of func-
tional brain connectivity are clearly contaminated by volume 
conduction, we have shown in modeling experiments that the 
values of the ISS are sensitive to the morpho-functional or-
ganization of the cortex rather than to the volume conduction 
and reference electrode (for relevant details, we address the 
reader to Ref. [22,40,49]). Here we will describe only main 
results of modeling experiments.  

 The ISS topological variability was studied in the pairs of 
EEG channels recorded from longitudinal (occipital-to-
frontal) and transversal (posterior and anterior left-to-right) 
electrode arrays (in straight and backward directions) with a 
dense electrode positioning (Fig. 9). The relationship of the 
ISS versus interelectrode distance was analyzed [22]. Also 
data from actual EEG was compared with so-called ‘surro-
gate’ EEG in which a mixing of actual EEG channels was 
done in such a way that each channel was recorded in a dif-
ferent time. Thus, the natural time relations between chan-
nels in such EEG were completely destroyed. However, the 
number and the sequence of segments within each channel 
remained the same as in the actual EEG. The ISS values ob-
tained from the ‘surrogate’ EEG indicate the relative rate of 
stochastic alternations (confidence levels) of ISS in the ac-
tual EEG [40]. Based on the volume conduction model, as-
suming that there is spatial homogeneity in a non-connected 
system, one would expect the ISS values to exhibit a 
smoothed decrement with increased interelectrode distance. 
Moreover, this decrement should be equal for a posterior-to-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (9). Schematic illustration of positioning of longitudinal (posterior-to-anterior) and transversal (posterior/anterior left-to-right) EEG 

electrode arrays. Large white circles indicate the classical areas of EEG recordings in accord with International 10-20 System. Explanations 

are in the text. 
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anterior versus anterior-to-posterior directions. Indeed, we 
demonstrated that the ISS decreased with the increasing of 
the interelectrode distance. However, the relationship be-
tween the ISS and interelectrode distance was very far to be 
monotonous [22]. In contrast, previous studies measuring 
EEG coherence pointed to a clearly monotonous decrease of 
coherence values with increasing interelectrode distance 
[71]. It is important to note that practically all ISS values in 
this study were significantly higher (p < 0.05 to p < 0.01 for 
different pairs, Wilcoxon test) than the stochastic level of 
synchronization in the ‘surrogate’ EEG. This notably indi-
cates that even on maximal interelectrode distances there 
was substantial synchrony between the structural peculiari-
ties of electrical field.  

 We also found that straight (posterior-to-anterior) and 
backward (anterior-to-posterior) dependences of ISS from 
the interelectrode distance were significantly different be-
tween each other. The ISS decrease for the straight direction 
was significantly faster (p < 0.05) than for the backward di-
rection [22]. This so-called “spatial hysteresis” obviously 
pointed to a conclusion that ISS reflects morpho-functional 
peculiarities of the different cortical areas and is indicative of 
a non-isotropic nature of the cortex electrical field, rather 
than it reflects the process of volume conduction of the elec-
trical field in the brain tissue. If ISS would really reflect only 
volume conduction, changes in the values of ISS should have 
been equal for the same distances, regardless of which brain 
areas are involved. Clearly, they are not [40].  

 In the study of ISS dependence from the interelectrode 
distance in the transversal arrays it has been shown that al-
though ISS values were slightly dependent on the interelec-
trode distance, the highest values of ISS were obtained for 
cortical areas with maximal interelectrode distance – ho-
mological (electrode 1 and 8 at the Fig. 9; see also [22]). It is 
supposed that homological cortical areas usually participate 
in the same functional acts [14,40].  

 Taken together, the findings obtained in these studies 
suggest that ISS has notable topological peculiarities along 
the neocortex, and thus, is sensitive to morphological and 
functional organization of the cortex [22].  

 In order to compare the results of EEG structural syn-
chrony (SS) approach with some of conventional methods, 
the Pearson coefficients of correlation were calculated for 
the same data [22]. Although the results of crosscorrelation 
analysis and analogous data for ISS were similar, the SS 
description of interrelations between cortical areas was sig-
nificantly more contrast and pronounced. The same rule was 
found when the interelectrode distance was taken into con-
sideration [22,40]. The similarity between dynamics of ISS 
and crosscorrelation values was observed only for the rest 
conditions. However, in the cases of a more complex struc-
ture of the electrical field architectonics (during cognitive 
tasks or pathological states), the dynamic characteristics of 
ISS and crosscorrelation indices may be substantially differ-
ent [49]. The obtained results pointed to a conclusion that 
most likely exactly the temporal consistency of EEG seg-
mental structure initially underlies and determines high val-
ues of crosscorrelation and coherence [22]. 

 It is important to stress that contrary to other EEG meas-
ures of functional connectivity, the ISS measure is reference-

independent [40,49] and no implicit or explicit source model 
is needed for the interpretation of the results. 

 In fact, volume conduction should lead to spurious corre-
lations which would be equally represented across all fre-
quency bands and would be just as likely to be positive as 
negative. As our modeling experiments showed, the contri-
bution of these spurious results to the overall picture seems 
likely to have been largely insignificant: a) in contrast to 
coherencies which are largely redundant in neighboring 
channels [95], the ISS measure is not [22]; b) adding nonin-
teracting sources (e.g. noise) to EEG signals causes a de-
crease in the ISS measure instead of an increase, thus leading 
to an underestimation of ISS effects, rather than generating 
spurious ISS values [40].  

 Given that actual correlations occurred with a much 
higher incidence than expected by chance, and due to the 
independence of ISS from the power spectrum of the EEG 
signal [23,44], we believe that the ISS measure can accu-
rately reflect cortical functional connectivity. The accuracy 
of topographic EEG mapping for determining local (imme-
diately under the recording electrode) brain activity was al-
ready established by Cook et al. [96]. Giving further support 
of the interpretation that the electrophysiological differences 
reflect differences in brain functioning is that the ISS meas-
ure was specifically developed to measure dynamic interde-
pendencies between rapid changes in time series and to be 
applied to test a specific hypothesis that such functional cor-
relations are different in various functional states [23,43-
46,53] and diseases [40,49,54-57]. We therefore argue that 
the ISS measure is virtually unaffected by volume conduc-
tion and has construct validity in the presented context. 

Interfrequency Coupling and ISS  

 Considering the composite polyphonic character of the 
EEG signal, one needs keep in mind that frequency hetero-
geneity can influence the segmental structure of the EEG 
signal [23,40]. Precisely discrete frequency components play 
the main role in ‘switching on’ and ‘turning off’ of discrete 
morpho-functional operations of brain systems [7,12-
14,28,33,40].  

 It is worth to note here that methodologically within the 
OA framework there are no restrictions for the relations be-
tween frequency bands, because the ISS measure does not 
associated with the phase relations of the EEG signal as it is 
the case for other conventional techniques for estimation of 
EEG synchronization [23]. Application of OA methodology 
reveals that segmental flows for each of the EEG frequency 
component are more or less synchronized, depending on the 
character of the information-processing of brain activity 
[40]. Interesting, such synchrony does not depend on the 
frequency bands’ closeness in the EEG spectral pattern [40]. 
One can see from Fig. (10) that ISS was not always higher, 
for example, in the pair alpha1-alpha2 of frequency bands 
(neighbors) when compared, for example, with the pair 
delta-beta1 of frequency bands (non-neighbors).  

 The principal finding is that the ISS of basic EEG 
rhythms decreased with the increase of cognitive loading 
[40]. Another finding concerns the occipital-frontal gradient: 
ISS values for the interfrequency synchrony increase during 
rest condition in the direction from occipital to frontal corti-
cal areas and decrease during cognitive activity (Fig. 10). 
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Interesting, this phenomenon does not depend on the EEG 
alpha-activity expression, since it was identically present in 
subjects with very high and very low alpha-activity [40]. 

Operational Modules of OA and Spatiotemporal Patterns 
of other Frameworks  

 From the first sight, there is some correspondence be-
tween operational module (OM) of OA framework and spa-
tiotemporal EEG patterns described in other theoretical 
frameworks: the functional clusters of Tononi and Edelman 
[97]; holoscapes (spatiotemporal EEG patterns of coopera-
tive processes) of Pribram [98]; and quasi-stable EEG spatial 
structures of Nunez [99]. Although all these modules have 
much in common, the differences between them come from 
the particular method of their estimation (see the following 
section). OMs are based on the estimation of ISS values 
among involved EEG channels (Fig. 2). Structural EEG syn-
chrony (indexed by ISS) refers to a general class of nonlinear 
interdependencies between dynamic systems, in which rapid 
transients in one system can be directly mapped to a second 
system [22]. In general, this measure belongs to the class of 
methods estimating synchronization behavior between non-
identical (structurally nonequivalent) systems (for a detailed 

discussion on this and other classes of synchrony methods, 
see Ref. [100]). 

 The main benefit of the OA methodology over the ones 
quantifying coherence, correlation, and phase synchroniza-
tion is a methodological-conceptual one. Contrary to find-
ings of previous EEG studies on functional connectivity, the 
ISS measure is well suited to extract information about dis-
crete brain operations from EEG recordings and to estimate 
the level of inherent synchrony of these operations appearing 
simultaneously and locally in different cortical areas (for 
further discussion, see Ref. [14,15,28]). It can therefore 
quantify a broader range of coordination phenomena, espe-
cially metastable and nonstatic nonlinear phenomena, which 
cannot be captured by phase synchronization-based metrics 
[101]. Phenomenologically, this type of EEG structural syn-
chrony corresponds to the operational synchrony process: 
transient synchronization of operations executed by distant 
transient neuronal assemblies [9,14,27,28]. 

 It has been demonstrated that if two areas of cortex are 
operationally synchronized, then they tend to be also syn-
chronized with some other areas [40]. Calculations showed 
that the power-law statistics governs the probability that a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (10). Nonrandom ISS values for ten pairs of five main frequency bands. The radian-axis displays the labels of the frequency band pair 

connection. The median-axis displays the average values of ISS for the frequency band pair connection within each category. Sections I, II, 

and III of polar diagram correspond to the frequency band pair connections grouped on the basis of closeness of frequency bands to each 

other in the power spectrum. I section contains all neighboring pairs of frequency bands: 1 – delta-theta; 2 – theta-alpha1; 3 – alpha1-alpha2; 

4 – alpha2-beta. II section contains pairs of frequency bands which are separated by one band: 5 – delta-alpha1; 6 – theta-alpha2; 7 – alpha1-

beta. III section contains pairs of frequency bands separated by two and more bands: 8 – delta-alpha2; 9 – theta-beta; 10 – delta-beta. 
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number of cortical areas are recruited into an OM. This 
ubiquitous dependency is characterized by a fractal relation 
between different levels of resolution of the data, a property 
also called self-organized criticality [5,102]. 

 Additionally, as we have shown somewhere [15], OMs 
are not directly connected with the structural (anatomical) 
modules of the cortex [103]. It should be stressed also that 
discussed OMs are very distant from static functional mod-
ules (FM). According to FM model, each function is allo-
cated to an element of the brain system – FM, and features of 
external stimuli are directly mapped to each FM. In contrast, 
the OMs within the OA framework have dynamic behavior – 
they are metastable [7,14,28]. So the function of each ele-
ment cannot be uniquely determined (see also Ref. [104]). 
This is in line with work of Ramachandran and Blakeslee 
[105], who found evidence of considerable changes of FMs; 
and it is in support of the concept of a dynamic brain [4].  

 OMs which are proposed in the OA framework are the 
brain field characteristic and might offer some advantages 
over physical connections, as considered briefly in Nunez 
[99] and in the work of Hoppenstead and Izhikevich [106], 
who found that the synaptic connections between cortical 
columns did not guarantee substantial interactions. In resent 
publication, John [107] also argues that brain electromag-
netic field might be that phenomenon where we must search 
an emergent property of mentality. This idea has initially 
received substantial support from EEG studies of Lehmann 
and colleagues [83,108], which have demonstrated that the 
dynamics of the whole brain EEG field can be represented 
by the intervals of quasistability (or “microstates”) and by 
sudden transitions between them [109,110]. Furthermore, it 
has been shown that these microstates are associated with 
different modes of spontaneous [111] and abstract [112] 
thoughts, and with spontaneous visual imagery [112].  

 However, because Lehmann’s segmental methodology is 
based on the momentary whole brain electric field configura-
tions, it does not provide information about frequency do-
main. In such a case the relationship between microstates 
and frequency oscillations remains unclear. Another draw-
back of Lehmann’s approach concerns the involvement of 
different cortical areas: even though the whole spatial brain 
electric field segmentation is a very important method for 
studying the quasi-stationary structure of brain activity, it is, 
however, lacking of the time-dimensional information in 
each cortical area separately. Moreover, local EEG sites do 
not participate equally in the formation of the resulting mi-
crostate and this has not been justified from the viewpoint of 
indubitable neurobiological equivalence of cortical areas.  

 In contrast to Lehmann’s spatio-temporal EEG field mi-
crostates, OMs have very reach internal structure, where the 
temporal information of each cortical area (which partici-
pated in OM) is precisely known and preserved (see Fig. 2); 
additionally such OMs can be formed within any frequency 
band and even between different frequency oscillations [40]. 
In this sense, OMs lie in between the classical and 
connectionist architectures. From the one side they resemble 
connectionist networks [113] in many respects: OMs may 
serve as associative, content addressable memories, and they 
are distributed across many neural assemblies. Yet, from 
another side, the specific temporal patterns (OMs) by them-
selves are unitary, like symbols of classical logics [114]. 

Thus, within the same OM, discreteness of parallel brain 
operations (indexed as sequences of concatenated quasi-
stationary segments in local EEGs) is implemented in the 
continuity of unified metastable spatio-temporal patterns 
(indexed as OMs) of brain activity [28]. 

 Interesting, the mean duration (life-span) of OMs (for an 
EEG with a broad frequency band of 0.3-30 Hz), which 
cover most part of (or entire) cortex usually equals to 80-100 
ms. These values coincide precisely with the mean micro-
state duration of entire neocortex (82 ± 4 ms) obtained for 
healthy young adults using Lehmann’s approach [115]. 
These results cross-validate both methodologies. 

Relation of OA Framework to other Theoretical Models  

 At the first sight, the OA theoretical framework has some 
resemblance to other theoretical accounts currently dominat-
ing the field of brain-mind research. Here we will briefly 
discuss the similarities and differences between OA and 
other theoretical frameworks. One such theory is the “Global 
Workspace” (GW) framework [116]. According to it, the 
brain seems to show a distributed style of functioning, in 
which the detailed work is done by millions of specialized 
neural groupings without specific instructions from some 
command centre. Mostly these are unconscious processes; 
however, consciousness creates widespread access (free from 
interference) to complex and unconscious systems. Using 
“theater metaphor,” Baars argued that as theatre combines 
very limited events taking place on stage with a vast audi-
ence, consciousness involves limited information that creates 
access to a vast number of unconscious sources of knowl-
edge [117]. One can see that the OA theory has some simi-
larity with Baars framework. 

 Generally, the OA framework is also consistent with the 
“Framework for Consciousness” suggested by Crick and 
Koch [118]. The main lines of correspondence are the fol-
lowing: a preamble on the cerebral cortex; the fact, that most 
cortical areas is sensitive to correlations among correlations 
being expressed by other cortical areas; the importance of 
neuronal assemblies; the claim that conscious awareness is a 
series of discrete snapshots and that the durations of succes-
sive snapshots are not constant [118].  

 Further, the OA theoretical framework is also compatible 
with Chalmers’ “Philosophy of Mind” [119] in the part that 
any distinction in experience should be mirrored by a dis-
tinction in neural activity, and the pattern of experience 
should be matched by the pattern of awareness (see “func-
tional isomorphism” principal in Ref. [7,9,27]).  

 The OA framework is also consistent with Revonsuo’ 
“Neuroconsciousness” conception [120]. According to this 
framework, consciousness is a real biological phenomenon 
that is physically located within the brain; – it is the phe-
nomenal level of brain organization [121]. Further, it is sug-
gested that physiologically neuroconsciousness consists of 
large-scale electrophysiological (or bioelectrical) activity 
spatio-temporal patterns; and synchrony in these patterns 
may be the mechanism by which the conscious state and its 
contents are realized in the brain. Further, it has been pro-
posed that “neural synchrony seems to be capable of sup-
porting higher-level electrophysiological entities that resem-
ble the content of the phenomenal level of organization” (p. 
6 in Ref. [120]).  
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 However, the OA framework, by contrast to other theo-
ries, is not just a conceptual construction, – it has methodo-
logical means to explicitly measure, estimate, model and 
describe the brain-mind operations involved in the complex 
human behavior, cognition and phenomenal consciousness. 
According to the OA framework, the notion of operation is 
central for perception, attention, intention, memory, action, 
and eventually consciousness [14,27].  

 Besides mentioned above theories, there are two related 
theoretical frameworks which have the closest similarities 
with the OA conceptualization. These are (1) the “Resonant 
Cell Assemblies” framework developed by Varela [122] and 
(2) the “Dynamic Core” theory proposed by Tononi and 
Edelman [97]. Because of limited space, we summarize the 
similarities and differences between these theoretical frame-
works and the OA theory in Table 1. One can notice that 
besides similarities between all three theories, the OA 
framework has several notable differences. We will concen-
trate here only on the most relevant ones:  

• Neither the Neuronal Assembly (NA) of Varela, nor 
the Dynamic Core (DC) of Tononi and Edelman is 
flexible enough to allow for a representation of com-
plex objects or for the execution of complex combina-
torial cognitive operations, which are also the gist of 
their internal structure. This is so because NA and DC 
do not have internal hierarchical organizations 
(structures). However, it is essentially necessary to al-
low for hierarchical organization with the structured 
integration of subcomponents [123] to represent com-
plex phenomenal objects and operations. The compo-
nents of complex objects and operations are often 
necessarily activated under the same overall condi-
tion; hence without defined internal structure a 
NA/DC could not distinguish between the two (or 
more) types of components or events. In contrast, Op-
erational Modules (OMs), which are the main con-
stituents of the OA framework, do have such internal 
organization [14,27,28]: one OM may be a member of 
another more complex one, or it may be decomposed 
until simple neuronal assemblies, each of which 
would be responsible for simple brain/cognitive op-
eration. Therefore, the recombination of subsets of 
neuronal assemblies into OMs, and further of differ-
ent OMs into larger structured OMs yields a vast 
number of potential combinations needed to represent 
the multivariability of cognition and eventually con-
sciousness [7,9]. It should be stressed here that func-
tionally, the outcome of coincident operations of 
many neuronal assemblies is an OM rather than larger 
ensemble of particular neurons firing in synchrony 
[14]. Such complex structure of OM can be used for 
semantic representations of words with similar mean-
ings, for example, for hyponyms and hyperonyms 
[124]. For instance, it can be shown that between-
assembly functional connections and activity dynam-
ics are a possible basis of semantic associations 
and/or grammatical phenomena [124,125]. 

• In contrast to NA/DC models, the OA framework 
supposes large number of coexisting OMs. Indeed, 
considering the composite polyphonic character of the 
electrical brain field (EEG), this field may be pre-

sented as a mixture of many time-scale processes (in-
dividual frequency components) [12,99,126]. Conse-
quently, a large amount of functionally distinct OMs 
can co-exist simultaneously at different time-scales 
and even between them [9,14,23]. Simultaneous pres-
ence of these OMs subserves the numerous opera-
tional acts on the functioning of the brain-mind and 
on the interaction of the organism with its environ-
ment [127]. Only subset of these OMs, however, con-
stitutes mental states, some of which are of conscious 
nature (for further discussion see Ref. [9,14,27,28]). 

• Even though all three theoretical frameworks stress 
the importance of functional connections, the con-
cepts they use to define the values of functional con-
nectivity differ significantly between them. This sub-
ject is discussed in a grate detail in our previous pub-
lications; therefore, we address interested reader to 
them [14,15]. Here we should only mention that OA 
framework is based on a “true” functional synchrony 
which does not necessarily require any anatomical 
connections. It is the stimulus (either external – 
physical or internal – phenomenological), the task, or 
some function that cause the synchronization; there-
fore, it is a function-based synchronization [14]. 

• The OMs in contrast to NA/DC are characterized by 
the metastable nature. Attention, we speak here not 
about dynamics of OM/NA/DC which is also metas-
table, but about the functional entity (OM/NA/DC) 
pre se. As we have already mentioned in the main 
body of the text, the OMs are inherently metastable 
since they constructed by separate neuronal assem-
blies. Each from these assemblies process and repre-
sent different types of information from relatively in-
dependent brain functional systems; however, at the 
same time these assemblies exhibit tendency for the 
coordinated activity [7,14,28]. Such simultaneous ex-
istence of autonomous and coordinated tendencies is 
the essence of the metastable regime of a brain func-
tioning [2,3]. 

• NA/DC are lacking of the time-dimensional informa-
tion in each cortical area separately, while the OM is 
based on the detailed and known time-dimensional in-
formation in each cortical area (Fig. 2). This informa-
tion is presented in the sequences of concatenated 
quasi-stationary EEG segments (and their characteris-
tics) revealed from the local EEG recordings [14]. 
The continuity of OMs exists as long as the set of 
TNAs keeps synchronicity between their discrete op-
erations [28]. We argue that at the phenomenological 
(subjective) level during complex OM presence, a 
continuity of consciousness would be experienced 
[9,27]. This conclusion is consistent with the view 
presented by Damasio [128] that consciousness 
comes from the abundant flow of endless narratives 
of the processed objects and their features in different 
brain areas. 

CONCLUSIONS  

 The OA theory adopts the view that brain and mental 
processes (a) essentially evolve over real time (a dynamical 
approach) and (b) are characterized by distinct microstates 
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 Table 1. Comparison of Operational Architectonics framework with Resonant Cell Assemblies and Dynamical Core frameworks.

Dinamic Core Resonant Cell Assemblies Operational Architectonics
Tononi & Edelman, 1998 Varela, 1995 Fingelkurts & Fingelkurts, 2001

Definition The dynamic core (DC) is a
functional cluster: its participating
neuronal groups are much more
strongly interactive among 
themselves than with the rest of the
brain. 

A neural assembly (NA) is a
distributed subset of neurons with
strong anatomical reciprocal
connections.

Operational Module (OM) is a
distributed set of the neuronal
assemblies, which synchronize their
operations in order to participate in
the same cognitive act during the
period of observation.

Structure The DC (functional cluster) is a
single, integrated neural process that
cannot be decomposed into
independent or nearly independent
components, therefore it does not
have internal structure.

The NA is a single, integrated neural
process that cannot be decomposed
into independent or nearly
independent components, therefore it
does not have internal structure.

The OM has rich internal strucutre
and therefore can be decomposed
into independent or nearly
independent neuronal assemblies;
each OM can be integrated with
other OMs forming new more
complex OM.

Inclusion 
criteria 

Participation in the DC depends on
the rapidly shifting functional
connectivity among neurons rather
than on anatomical proximity.

Participation in the NA depends on
the rapidly shifting functional
connectivity among neurons rather
than on anatomical proximity.

Participation in the OM depends on
the rapidly shifting functional
connectivity among neuronal 
assemblies rather than on
anatomical proximity.

Nature The DC is a process, since it is
characterized in terms of time-
varying neural interactions , not as a
thing or a location.

The NA is a process, since it is
characterized in terms of time-
varying neural interactions , not as a
thing or a location.

The OM is a process, since the
continuity of OM exists as long as the
set of neuronal assemblies keeps
functional synchronicity between
their discrete operations on a
particular time-scale.

Number Brain is characterized by one DC at a
time, however certain psychiatric
syndromes may be associated with
the existence of multiple dynamic
cores within one brain.

Author did not address this issue. Brain in normal state as well as
during different psychiatric
syndromes is characterized by the
existence of multiple OMs (of
different complexity) within one brain.

Metastability The DC constantly gives rise to new
patterns in succession and thus has
metastable dynamics, however it is
not metastable  by itself.

The NA constantly gives rise to new
patterns in succession and thus has
metastable dynamics, however it is
not metastable  by itself.

The OM constantly gives rise to new
patterns in succession and thus has
metastable dynamics; additionally it
is metastable by itself because
intrinsic differences in activity
between the neuronal assemblies
which constitute OM are sufficiently
large that they do their own job , while 
still retaining a tendency to be
coordinated together within the same
single OM.

Time-scale Its global activity patterns must be
selected within less than a second
out of a very large repertoire.

Its global activity patterns must be
selected within less than a second
out of a very large repertoire.

Its global activity patterns must be
selected within less than a second
out of a very large repertoire.

Dynamics The DC may change in composition
over time.

The NA may change in composition
over time.

The OM may change in composition
over time.

Relation to 
the rest of 
the brain

Different parts of the brain can be
jointly part of the DC but the core is
not restricted to any particular subset
of the brain.

Different parts of the brain can be
jointly part of the NA but it is not
restricted to any particular subset of
the brain.

Different parts of the brain can be
jointly part of the OM but it is not
restricted to any particular subset of
the brain.

D
   

 I 
   

F 
   

F 
   

E
   

 R
   

 E
   

 N
   

C
   

 E
   

 S
S

IM
IL

A
R

IT
IE

S



90    The Open Neuroimaging Journal, 2008, Volume 2 Fingelkurts and Fingelkurts 

(a symbolic approach), which are realized by a set of distrib-
uted but functionally connected neuronal assemblies (a 
connectionist approach) and are the result of communication 
between neuronal assemblies (a computational approach). 
Methodologically, OA framework enables to study in a pre-
cise manner the peculiarities of transient neuronal assem-
blies’ behavior (local interactions in the neocortex), allow-
ing, thus, to assess the mesolevel of brain activity description 
through the large-scale measures as an EEG and/or MEG. 

 Since it is obvious that local interactions among neurons 
within neuronal assemblies (mesolevel) cannot be independ-
ent from global integrative processes (macrolevel), func-
tional interrelations between neuronal assemblies located in 
different cortical areas should be addressed also. With OA 
methodology a new type of integrative brain activity – op-
erational synchrony – has been discovered by means of ISS 
measure. It is important to remind that in the case of ISS, it 
is not the immediate amplitudes of the EEG signals or/and 
their rhythmical components, but the moments of abrupt 
shifting of quasi-stationary EEG segments among different 
channels that are synchronized. This type of synchrony re-
flects a true functional connectivity between different brain 
areas by means of coupled operations (for a discussion, see 
Ref. [15]). 

 Generally, ISS (a) is a robust technique which is sensitive 
to temporal structure of the EEG signal; (b) accounts the 
nonstationary nature of this signal; (c) does not use averag-
ing procedures and has specific tests for non-random and 
non-occasional nature of the results; (d) has notable topo-
logical peculiarities along the neocortex and, thus, is sensi-
tive to morphological and functional organization of the neo-
cortex; (e) is relatively independent on EEG spectral inten-
sity, reference electrode and volume conduction. Together 
these ISS aspects lay a strong foundation for a very sensitive 
measure, which can be used for understanding the neural 
mechanisms of complex coordinated brain-mind operations 
within an OA framework. 
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