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Abstract: Phosphene sensation is commonly used to measure cortical excitability during transcranial magnetic 

stimulation (TMS) of the occipital cortex. However, some individuals lack this perception, and the reason for it is still 

unknown. In this work, we used functional magnetic resonance imaging (fMRI) to detect brain activation during local 

TMS of the occipital cortex in twelve healthy subjects. We found that TMS modulated brain activity in areas connected to 

the stimulation site, even in people unable to see phosphene. However, we observed a trend for a lower blood-

oxygenation-level dependent (BOLD) signal, and smaller brain-activation clusters near the stimulated site than in the 

interconnected brain areas, suggesting that TMS pulse is more effective downstream than at its application site. 

Furthermore, we noted prominent differences in brain activation/deactivation patterns between subjects who perceived 

phosphene and those who did not, implying a functional distinction in their neuronal networks that might explain the 

origin of differences in phosphene generation. 
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INTRODUCTION 

Transcranial magnetic stimulation (TMS), a non-invasive 
method, is used to explore the human brain’s processes, such 
as language, vision, and motor systems [1]. Applying TMS 
pulses to the occipital cortex entails the brief perception of a 
light flash, called phosphene sensation [2], a response that is 
employed extensively to assess the excitability of the 
primary visual cortex [3]. However, the origin of phosphene 
generation is unknown, and its induction with single-pulse 
TMS is irregular [4-7]. Apparently, phosphenes are generated 
in V1, the primary visual cortex, and V2/3, the extrastriate 
visual-cortical areas [2, 5,6], indicating that the primary 
visual cortex is one fundamental area for phosphene 
perception [7,8]; nevertheless, others studies point to its 
subcortical origin (e.g., optic radiation) [9]. Meister and 
colleagues [10] found remarkable differences in fMRI-
activation during visual stimulation (checkerboard paradigm) 
between people perceiving phosphene and those lacking this 
perception, suggesting that this disparity might reflect inter-
individual functional differences in visual neuronal networks. 
To verify this supposition, we interleaved TMS pulses in 
occipital cortices and 4-Tesla whole-brain blood oxygenation  
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level dependent (BOLD)-fMRI acquisition to image local 
and distant co-activations, and reveal their association with 
phosphene generation.  

Concurrent TMS-fMRI, a non-invasive approach 

demonstrating the transsynaptical propagation of activation 

between and area stimulated by a TMS pulse, and its remote 

interconnected brain regions, reveals direct causal functional 

interactions between these two sites in the brain [11,12]. 

Accordingly, this dual modality can highlight the brain’s 

adaptation to the TMS-induced virtual lesion and the 

consequent changes in activity associated with the 

behavioural changes frequently observed throughout TMS 

cortical stimulation [13]. Measurements of such changes in 

tissue oxygen, neural activity, and total hemoglobin 

(electrophysiology, optical imaging), in the visual cortex of 

cats, demonstrated that the TMS stimulus modifies neuronal 

activity that is reflected in alterations in cerebral 

hemodynamics and, therefore, can be detected by fMRI [14]. 

Some groups explored the effects of the TMS pulse on brain 

function after applying the TMS-fMRI combination to the 

human motor cortex [15-26]. Similarly, this combination 

was applied to the prefrontal cortices [27], frontal eye-field 

(FEF) [28] , and parietal cortices [29,30]. However, to our 

knowledge, no one employed fMRI to evaluate the brain’s 

response when discharging TMS directly over the occipital 

area. In this work, we used simultaneous TMS-fMRI to map 
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the functional response in the cortical- and subcortical-areas, 

associated with phosphene generation, after delivering the 
TMS pulse over the primary visual cortex.  

METHODS 

Subjects 

Twelve non-smoking adult healthy volunteers (11 men; 1 
woman; age 32 ± 5 years) participated in this study. All 
subjects were carefully screened to ensure that they met the 
study’s inclusion criteria; viz., age 18 – 40 years, ability to 
read and speak English fluently, and right-handed dominance. 
Subjects were excluded if they were taking any medication 
other than vitamins (or contraceptives), had any history of 
chronic medical-/neuropsychiatric-illnesses or drug use/ 
dependence, had any contra-indicated metallic objects in the 
body, claustrophobia, or positive urine toxicology on the day 
of the study. The Institution Review Board (IRB) at Stony 
Brook University approved the study protocol; each 
participant signed the IRB’s approved informed consent form. 

TMS-Setup 

Before the TMS-fMRI scan, we administered a single-
pulse TMS, using the Magstim, Model 220 (The Magstim 
Company, Wales, UK - pulse duration 250 μs, maximum 
repetition rate 1 Hz, maximum field strength 2.0 T), with a 
standard 70 mm double coil (70-mm outer wing diameter- 
maximum field strength 2.2 T). The stimulus was given over 
the left occipital area (primary visual cortex); the participants, 
keeping their eyes open, wore a blindfold to minimize 
external visual input. Varying the intensity of the stimulus in 
steps of 5%, we asked participants to report whenever they 
saw phosphene; we defined a subject’s phosphene threshold 
as the level at which it was elicited in three of five trials. 
This procedure took place in the subject-preparation room, in 
the MRI building (local magnetic field 0.6 mT). 

TMS-fMRI Session 

In the RF-shielded MRI room, TMS was applied through 
a nonferromagnetic double coil (70-mm outer wing diameter- 
maximum field strength 0.9 T) connected to the same 
magnetic stimulator used during the setup session (above), 
via a 10 meter cable through a radio-frequency (RF) filter 
tube. The TMS coil was attached inside the RF head coil. 
Each subject lay supine with their head resting on the MRI-
compatible TMS coil (the center of which was positioned at 
the occipital bone’s most prominent projection, slightly 
lateral to the left side of the midline) inside the RF-coil 
(local magnetic field 1 T). We verified each volunteers’ 
threshold for phosphene sensation (with their eyes open but 
covered). Next, the volunteer was moved into the MRI 
scanner (local magnetic field 4 T) and their phosphene 
threshold rechecked. During simultaneous TMS-fMRI, again 
the TMS stimulus was applied over the left occipital region 
with the intensity set for the phosphene threshold under 4 T; 
for subjects unable to perceive phosphene, we set the 
stimulator at a fixed value of 40%, i.e., the phosphene 
threshold measured for the first subject able to perceive 
phosphene under 4 T.  

 The stimulus paradigm comprised three 30-second 
epochs of “REST”, and three with “TMS” (28-seconds long; 
8 TMS pulses); during the latter , the pulse was applied with 

a frequency of 0.25 Hz interleaved, after 300 ms, with fMRI 
acquisition [31]. Subjects pushed a button, with their right 
hand, every time they saw “flashes of light”. TMS pulses and 
fMRI data acquisition were synchronized using a TTL (5 V) 
trigger signal generated immediately after acquiring the 
previous image in the time series. 

MRI 

Subjects underwent fMRI in a 4 Tesla Varian/Siemens 
MRI scanner, equipped with a self-shielded whole-body 
SONATA gradient set and a standard quadrature head 
resonator. Functional images were collected using a single-
shot T2*-weighted gradient-recalled-echo planar imaging 
(GRE-EPI) imaging sequence (TE/TR=20/2000 ms, 4 mm 
slice thickness, 1 mm gap, typically 33 coronal slices, 64x64 
matrix size, 3.125 mm in-plane resolution, 90

o
-flip angle, 94 

time points) covering the whole brain. Within 2s of TR, the 
image was acquired in 1.7 s, i.e., 0.3s after the previous 
image acquisition. Padding minimized the volunteers’ head 
motion during the scans.  

fMRI Data Processing 

We analyzed the fMRI data sets on UNIX and LINUX 
workstations (Compaq Alpha and dual XEON), using 
interactive data language (IDL) (Research Systems, Boulder, 
CO) and statistical parametric mapping packages, version 
two (SPM2 - Wellcome Department of Cognitive Neurology, 
London).  

Primary images of the raw data were reconstructed using 
IDL. EPI’s reconstruction program uses phase correction to 
deghost the time series [32], an iterative phase-correction to 
minimize signal loss [33], and a Hamming filter to improve 
the signal-to-noise ratio [34]. The first four sequential time 
points of each time series was eliminated from further 
analyses to ensure a steady state of magnetization. All time 
series were motion-corrected to the first volume using 6 
degrees of freedom (3 rotations, 3 translations). A B-spline-
interpolation was used for re-slicing the motion-corrected 
data sets. For Talairach normalization, the individual scans 
were matched to a standard reference brain of the same 
contrast, using a voxel size of 3 x 3 x 3 mm

3
. All time series 

were spatially smoothed with an 8 mm Gaussian Kernel.  

Statistical Analyses 

The activation maps were calculated for the entire group 
using a generalized linear model (GLM - fixed-effect 
analysis). The design matrix was generated by a boxcar 
reference function, and its derivative convolved with the 
canonic hemodynamic response function (HRF). The time 
series were band-pass-filtered with a high-pass filter (cut-off 
frequencies: 1/128Hz), and an HRF as low-pass filter. The 
mean signal-intensity was not scaled to avoid false 
deactivation signals [35,36]. Clusters with at least 15 voxels 
and p < 0.05 (FWE) were considered significant in the group 
analyses [37]. 

RESULTS 

Behavioural Data 

We found a significant change in the phosphene 
threshold under different background static magnetic field 
for the six subjects who perceived phosphene. Fig. (1) shows 
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the average of the phosphene threshold for three such 
conditions: 0.6 mT (subject-preparation room), 1 T (MRI 
scanner bed outside the MRI), and 4 T (center of the MRI 
scanner). For these six volunteers, the phosphene threshold 
decreased under an increasing static magnetic field. 

The performance data, i.e., button-press frequency, during 
the fMRI-TMS session shows that the subjects experienced 
the phosphene sensation for about 50% of the TMS pulses 
applied (average: 48.6%, standard deviation: 27.1 %). 

Brain Activation 

Fig. (2A and B), illustrates the effects of the TMS stimulus 
in brain activation (positive BOLD signal). The fixed-effects 
analysis revealed significant brain activation for group 1 
(able to see phosphenes – Fig. 2A, Table 1) at the following 
locations: Near the stimulus site (left occipital, cuneus – [-3, 
-90, 15]), occipital (precuneus), parietal (precuneus and sub-
gyral), frontal lobe areas (precentral gyrus - frontal eyes-field 
(FEF) [38], middle-, medial-, and superior-frontal gyrus, 
sub-gyral), cerebellum (cerebellar tonsil), brainstem 
(midbrain), thalamus, insula, cingulate gyrus, and uvula. 
Conversely, significant brain activation for the second group 
(non-perceiving phosphenes – Fig. 2B, Table 1) occurred in 
the subcortical occipital area (cuneus – [-24, -72, 9]), parietal 
lobe (sub-gyral), temporal lobe (middle and superior temporal 
gyrus), frontal lobe areas (precentral, middle-, medial-, and 
superior-frontal gyrus, sub-gyral), cerebellum (pyramis and 
inferior semi-lunar lobule), thalamus, and insula.  

We also evaluated the negative BOLD signal 
(deactivation). In those perceiving phosphene, there was 
significant deactivation in the occipital (middle occipital 
gyrus, temporal lobe (middle temporal gyrus and sub-gyral), 
frontal lobe (precentral gyrus, middle- and superior-frontal 
gyrus, sub-gyral), cerebellum (posterior lobe, inferior semi-
lunar lobule), and limbic lobe (anterior cingulate) (Fig. 2A, 
Table 2). For those lacking phosphene perception, Fig. 2B, 
Table 2 lists the significantly deactivated areas in the 
occipital lobe (fusiform gyrus, middle occipital gyrus), 
frontal lobe areas (middle-, medial-, and superior-frontal 
gyrus, sub-gyral), cerebellum (declive), and the limbic lobe 
(parahippocampal gyrus, anterior- and posterior-cingulate). 

 

Fig. (1). Average of phosphene level, for six subjects, for three 

different static magnetic-fields: 0.6 mT (subject-preparation room), 

1 T (MRI scanner bed outside the MRI), and 4 T (center of the MRI 

scanner). The dashed line, at 40%, shows the TMS intensity chosen 

for the TMS stimulus during TMS-fMRI acquisition for group 2. 

The error bars denote the standard errors. 

 

Fig. (2). Statistical maps of BOLD signal resulting from a fix-effect analysis for the two groups, 1) those able to see phosphenes (Fig. A), 

and, 2) those unable to see phosphenes (Fig. B) (6 subjects in each group). Fig. C shows the conjunctive analysis: C = Phosphene (P) + no-

phosphene (NP) and D the comparison between groups: D = P > NP (purple), NP > P (green). The color bar shows the T-score window; 

FWE, p < 0.05, activation (red – yellow) and deactivation (blue – green). FEF = Frontal Eyes-Field, Mb= midbrain, STG= superior temporal 

gyrus, TL=Temporal Lobe, AC=anterior cingulated, LG=lingual Gyrus, Th=Thalamus, ITG=Inferior Temporal Gyrus, MOG = Middle 

Occiptal Gyrus, IOG=Inferior Occiptal Gyrus, PC=Posterior Cingulate, P=Precunious, CG=Cingulate Gyrus, MiTG=Middle Temporal 

Gyrus, SFG=Superior Frontal Gyrus, PG=Precentral Gyrus, MiFG=Middle Frontal Gyrus, PL = Parietal Lobe, SPL=Superior Parietal Lobe, 

C=Cuneus. Coronal views showing the activation near the stimulated site for groups 1(A1), 2 (B1), conjunctive analysis (C1 - highlighted in 

grey in Table 3) and differential analysis (D1); a sagittal view with the position of the axial slices presented in Figs. A, B, C, and D. 
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Table 1. Brain Regions Showing Activation for Group 1 and 2 (Fig. 2A, B); Results from a Fix-Effects Analysis, T  4.56 (FWE, p < 

0.05), Voxel Size  15. (*[38]) 

Talairach Coordinates Cluster Level Voxel Level 
Brain Region 

(x, y, z)[mm] No. of Voxels (pcorr < 0.0001) (T-Score) 

Group 1: Phosphene 

1 - L, occipital lobe, cuneus (BA 18) -3 -90 15 19 6.30 

2 - L, parietal lobe, sub-gyral -27 -54 39 2341 10.43 

L, parietal lobe, precuneus (BA 7) -21 -63 33  10.30 

L, occipital lobe, precuneus (BA 31) -18 -72 18  9.61 

3 - L, cerebellum, cerebellar tonsil -27 -54 -33 86 7.76 

L, posterior lobe, uvula -9 -63 -27  5.17 

4 - R, brainstem, midbrain 6 -18 -12 506 10.80 

R, sub-lobar, thalamus, ventral lateral nucleus 

L, sub-lobar,Lentiform Nucleus, Putamen 

9 -9 3 

-27 -3 3 

 6.99 

5.39 

5 - R, temporal lobe, middle temporal gyrus (BA 21) 42 6 -27 29 6.31 

6 - R, frontal lobe, precentral gyrus (BA 44) -9 -36 -39 20 6.46 

L, limbic lobe, cingulate gyrus -9 -30 30  5.47 

7 - L, sub-lobar, insula -33 18 6 44 6.70 

8 - R, sub-lobar, insula (BA 13) 36 18 12 70 6.95 

R, frontal lobe, precentral gyrus (BA 44) 48 18 9  5.22 

9 - L, frontal lobe, medial frontal gyrus (BA 6) -6 3 54 345 10.16 

R, frontal lobe, medial frontal gyrus 

R, frontal lobe, sub-gyral 

3 3 57 

18 9 57 

 9.00 

6.49 

10 - R, frontal lobe, medial frontal gyrus 3 30 30 42 7.11 

11 - R, frontal lobe, superior frontal gyrus 36 36 30 362 9.07 

R, frontal lobe, superior frontal gyrus (BA 10) 24 57 24  7.87 

R, frontal lobe, middle frontal gyrus 33 54 18  7.21 

12 - L, frontal lobe, middle frontal gyrus -33 45 18 90 6.31 

13 - R, frontal lobe, middle frontal gyrus 39 6 39 98 6.57 

R, frontal lobe, middle frontal gyrus  33 9 48  6.15 

R, frontal lobe, sub-gyral 39 0 21  5.37 

14 - L, frontal lobe, precentral gyrus (FEF*) (BA 6) -42 0 45 36 6.13 

Group 2: Non-Phosphene 

R, cerebellum, pyramis 33 -69 -33 700 8.22 

R, cerebellum, inferior semi-lunar lobule  36 -63 -42   8.17 

R, cerebellum, pyramis 18 -69 -27  7.88 

L, occipital lobe, cuneus -24 -72 9 206 6.75 

L, parietal lobe, sub-gyral -24 -66 33  6.36 

L, temporal lobe, sub-gyral 

R, temporal lobe, middle temporal gyrus (BA 39) 

-27 -63 24 

33 -57 27 

 

24 

6.22 

6.32 

R, temporal lobe, superior temporal gyrus 36 3 -15 222 8.05 
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Table 1. contd….. 

 

Talairach Coordinates Cluster Level Voxel Level 
Brain Region 

(x, y, z)[mm] No. of Voxels (pcorr < 0.0001) (T-Score) 

R, sub-lobar, insula (BA 13) 33 21 0  5.05 

R, sub-lobar, thalamus, lateral posterior nucleus 

R, sub-lobar, thalamus 

15 -18 12 

3 -9 3 

74 6.37 

6.23 

L, sub-lobar, insula (BA 13) 

L, sub-lobar, insula 

L, frontal lobe, precentral gyrus (BA 44) 

R, frontal lobe, sub-gyral 

R, frontal lobe, middle frontal gyrus 

-42 -3 6 

-36 -12 6 

-42 9 9 

24 36 6 

30 39 -6 

38 

66 

5.60 

5.19 

5.27 

5.92 

4.85 

L, frontal lobe, middle frontal gyrus (BA 10) -39 54 18 39 5.96 

L, frontal lobe, middle frontal gyrus 

L, frontal lobe, middle frontal gyrus (BA 9) 

R, frontal lobe, superior frontal gyrus 

R, frontal lobe, superior frontal gyrus 

R, frontal lobe, medial frontal gyrus (BA 9) 

-42 42 30 

-42 36 36 

-21 54 3 

18 42 30 

21 36 24 

 

30 

26 

5.29 

5.06 

6.17 

5.74 

4.89 

 

Table 2. Brain Regions Showing Deactivation for Group 1 and 2 (Fig. 2A, B); Results from a Fix-Effects Analysis, T  4.56 (FWE, p 

< 0.05), Voxel Size  15 

Talairach Coordinates Cluster Level Voxel Level 
Brain Region 

(x, y, z)[mm] No. of Voxels (pcorr < 0.0001) (T-Score) 

Group 1: Phosphene 

R, occipital lobe, middle occipital gyrus 48 -66 -3 1961 15.24 

L, cerebellum, posterior lobe, declive -21 -78 -15  12.58 

R, cerebellum, posterior lobe, declive 

L, cerebellum, inferior semi-lunar lobule 

21 -78 -15 

-3 -57 -48 

 

16 

10.99 

5.16 

L, temporal lobe, middle temporal gyrus 

R, temporal lobe, sub-gyral 

R, temporal lobe, sub-gyral 

-54 -18 -3 

45 -24 -15 

45 -9 -12 

39 

24 

6.84 

5.93 

5.41 

L, limbic lobe, anterior cingulate -9 33 -12 487 11.26 

L, frontal lobe, middle frontal gyrus -21 36 -9  10.62 

L, frontal lobe, sub-gyral -18 27 -6  9.62 

R, frontal lobe, middle frontal gyrus (BA 11) 30 33 -12 40 9.14 

R, frontal lobe, precentral gyrus (BA 4) 

R, frontal lobe, precentral gyrus (BA 4) 

R, frontal lobe, precentral gyrus (BA 4) 

39 -24 60 

21 -24 72 

12 -30 72 

507 8.10 

7.64 

7.14 

L, frontal lobe, superior frontal gyrus (BA 8) -6 48 48 79 8.38 

L, frontal lobe, superior frontal gyrus (BA 8) -36 21 51 81 8.07 

L, frontal lobe, superior frontal gyrus (BA 8) -27 33 48  6.48 

Group 2: Non-Phosphene 

R, limbic lobe, posterior cingulate 9 -60 12 5043 14.01 

R, occipital lobe, fusiform gyrus  21 -60 -9  12.79 

R, cerebellum, declive 24 -69 -12  12.56 
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Table 2. contd….. 

 

Talairach Coordinates Cluster Level Voxel Level 
Brain Region 

(x, y, z)[mm] No. of Voxels (pcorr < 0.0001) (T-Score) 

R, occipital lobe, middle occipital gyrus (BA 19) 42 -69 9 149 9.43 

L, occipital lobe, middle occipital gyrus (BA 19) -39 -78 6 80 8.09 

L, frontal lobe, middle frontal gyrus -48 18 27 25 6.23 

L, frontal lobe, medial frontal gyrus (BA 6) -3 -6 48 30 5.68 

L, frontal lobe, middle frontal gyrus -18 39 -12 61 7.34 

L, frontal lobe, sub-gyral 

L, limbic lobe, anterior cingulated (BA 32) 

-18 21 -3 

-12 45 -6 

 5.42 

5.17 

R, limbic lobe, parahippocampal gyrus  33-27 -15 38 7.07 

L, frontal lobe, superior frontal gyrus (BA 8) -27 27 48 27 6.45 

 

Conjunctive analysis (Fig. 2C and Table 3) showed 

significant activation for all participants at the occipital 

(cuneus), parietal (precuneus), temporal (middle temporal 

and superior frontal gyrus, sub-gyral), frontal lobe (middle-, 

medial-, and superior-frontal gyrus), brainstem (midbrain), 

thalamus, insula, and cingulate gyrus. Conspicuous 

deactivation was evident in the occipital, frontal lobe areas 

(middle-, and superior-frontal gyrus), cerebellum, temporal 

lobe and limbic lobe (posterior and anterior cingulate, 

parahippocampal gyrus), and also in the occipital, frontal 

lobe areas (middle-, and superior-frontal gyrus), cerebellum, 

temporal lobe and limbic lobe (posterior- and anterior-

cingulate, parahippocampal gyrus). Furthermore, the 

differential BOLD signal (Fig. 2D and Table 4) revealed that 

activation is more significant for the phosphene-perceiving 

group than those who do not see it (group 1 > group 2). This 

was evident in the occipital (cuneus, lingual gyrus, middle 

occipital gyrus), parietal (paracentral superior- and inferior-

lobules, supramarginal- and postcentral-gyrus), temporal 

(middle temporal gyrus), frontal lobe areas (paracentral- and 

precentral-lobules, middle-, medial-, superior-frontal gyrus), 

brainstem (midbrain), cerebellum (culmen), and the limbic 

lobe (parahippocampal gyrus). In contrast, for the non-

phosphene-perceiving group (group 2 > group 1) activation 

was more pronounced in the occipital (middle occipital 

gyrus), temporal (middle temporal gyrus), frontal lobe areas 

(middle- and medial-frontal gyrus), cerebellum (tuber and 
culmen), and the limbic lobe (amygdala). 

DISCUSSION 

In this study we have used the simultaneous TMS-fMRI 
combination to evaluate the functional response associated 
with phosphene perception after delivering a TMS stimulus 
over the brain’s primary visual cortex area. We found that 
TMS modulated brain activity even in absence of phosphene 
generation; however, the remarkable difference in brain 
activation/deactivation between the people who perceive 
phosphene and those who lack this perception (Fig. 2) 
implies substantial divergence in their function networks; 
such divergence was already suggested in a previous study 
[10], and may explain the difference in phosphene generation. 

 TMS activated a smaller network in group 2 than in 

group 1, with no activation at the stimulus site; however, 

some brain areas were activated in both groups, including the 

subcortical occipital and parietal regions (Fig. 2, Table 1). In 

addition, BOLD change was less significant (Fig. 2) near the 

stimulus site than in distant brain regions, suggesting that 

TMS effects are more effective in interconnected brain areas 

than at the stimulation site. Early work, reviewed by Siebner 

and colleagues [39], pointed out that while single pulses or 

short trains of TMS at intensities below motor threshold 

failed to induce changes in the BOLD signal at the site of 

stimulation, the signal increased in the stimulated primary 

motor cortex (M1) during supra-threshold TMS. Therefore, 

as they suggested, the latter observation may reflect 

activation due to afferent feedback from TMS-induced hand 

movements. In a similar context, we noted the presence of 

BOLD signal near the site of stimulation only for those 

subjects who perceive phosphene, suggesting that this 

activation might trigger a feedback response from their 

visualizing phosphenes.  

The results from group 1 reveal a direct connection 
between the FEF, the occipital area, and the parietal cortex 
(Fig. 2, Table 1). The link between the first two was 
documented by a positron emission tomography (PET) study 
in primates, viz., delivering TMS in FEF causes changes in 
cerebral blood flow (CBF) in the visual cortex [40]. 
Similarly, Ruff and colleagues demonstrated a connection 
between FEF and the occipital cortex [28], and later between 
parietal cortex and the occipital cortex [29], by stimulating 
the FEF and the parietal cortex respectively. However, in 
both cases, their acquisition of fMRI by MRI surface coils at 
the occipital cortex greatly reduced BOLD-fMRI sensitivity 
in its more anterior regions (e.g., parietal and frontal cortex), 
virtually confining the effect to the occipital area (V1-V4). A 
different stimulation technique, transcranial electric 
stimulation (TES), also activated the occipital-, parietal-, and 
prefrontal- (FEF and supplementary eyes-field (SEF)) 
cortices, and areas associated with pain or discomfort, such 
as the limbic lobe, insula, and thalamus, when the electrodes 
were positioned on the occipital area [41]. Although TES 
preferentially stimulates fibers rather than cell bodies, this 
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Table 3. Brain Regions Showing Activation and Deactivation for the Conjunctive Analysis (P + NP, P = Phosphene and NP = Non-

Phosphene) (Fig. 2C); Results from a Fix-Effects Analysis, T  4.56 (FWE, p < 0.05), voxel size  15. (* pcorr not 

Statistically Significant) 

Talairach Coordinates Cluster Level Voxel Level 
Brain Region 

(x, y, z)[mm] No. of Voxels (pcorr < 0.0001) (T-Score) 

Activation 

R, occipital lobe, cuneus 24 -78 15 18 5.41 

L, parietal lobe, precuneus (BA 7) -21 -63 33 2810 11.60 

R, midbrain 9 -21 -15  10.03 

R, sub-lobar, thalamus 15 -18 12  8.99 

* L, occipital lobe, cuneus -4 -92 16  6.50 

R, temporal lobe, sub-gyral 30 -57 27 193 7.09 

R, temporal lobe, middle temporal gyrus (BA 21) 57 6 -18 16 6.08 

R, temporal lobe, superior frontal gyrus 39 3 -21 423 8.82 

R, sub-lobar, insula 33 18 9  6.71 

R, sub-lobar, extra nuclear 33 12 -9  6.25 

L, frontal lobe, sub-gyral -30 39 15 275 7.33 

L, frontal lobe, middle frontal gyrus -36 48 18  6.50 

L, sub-lobar, insula -36 15 6  6.44 

L, sub-lobar, insula -39 -6 3 19 5.43 

R, frontal lobe, middle frontal gyrus 33 36 27 93 7.92 

R, frontal lobe, middle frontal gyrus (BA 8) 36 36 39  5.99 

R, frontal lobe, middle frontal gyrus (BA 10) 24 57 21 35 6.63 

R, frontal lobe, superior frontal gyrus (BA 6) 6 6 57 106 7.39 

L, frontal lobe, medial frontal gyrus (BA 6) -9 6 51  5.69 

R, frontal lobe, medial frontal gyrus 3 30 30 58 6.96 

R, limbic lobe, cingulate gyrus 6 18 39  5.14 

R, limbic lobe, cingulate gyrus 9 -24 27 16 5.41 

Deactivation 

L, cerebellum, declive -18 -75 -12 5207 15.64 

R, limbic lobe, posterior cingulate 9 -57 12  15.14 

R, occipital lobe, middle occipital gyrus 45 -69 3  15.01 

L, limbic lobe, parahippocampal gyrus -21 36 -9 459 12.26 

L, limbic lobe, anterior cingulate (BA 32) -12 45 -6  10.31 

L, frontal lobe, sub-gyral -18 21 -3  9.73 

L, frontal lobe, superior frontal gyrus (BA 8) -6 48 48 109 8.24 

L, frontal lobe, superior frontal gyrus (BA 8) -30 24 51 118 7.83 

L, frontal lobe, postcentral gyrus -48 -15 33 23 5.76 

L, frontal lobe, middle frontal gyrus -48 18 27 33 6.90 

R, frontal lobe, superior frontal gyrus 21 21 51 83 6.60 

R, temporal lobe, sub-gyral 48 -12 -15 40 6.53 

L, temporal gyrus, middle temporal gyrus -54 -18 -6 17 6.78 
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Table 4. Brain Regions Showing the Differential Results for P > NP, and NP > P (Fig. 2D); Results from a Fix-Effects Analysis, T  

4.56 (FWE, p < 0.05), Voxel Size  15 

Talairach Coordinates Cluster Level Voxel Level 
Brain Region 

(x, y, z)[mm] No. of Voxels (pcorr < 0.0001) (T-Score) 

P > NP 

L, occipital lobe, cuneus (BA 18) -12 -72 15 949 10.60 

L, occipital lobe, lingual gyrus -6 -78 3  8.59 

R, occipital lobe, cuneus (BA 18) 12 -69 15  8.43 

R, occipital lobe, lingual gyrus 15 -96 -9 18 5.64 

R, occipital lobe, cuneus 9 -96 6  5.63 

L, occipital lobe, middle occipital gyrus -45 -75 9 370 6.98 

L, temporal lobe, middle temporal gyrus -45 -54 9  6.28 

L, parietal lobe, inferior parietal lobule -51 -39 27  6.26 

L, brainstem, midbrain -12 -15 -6 85 8.28 

R, brainstem, midbrain 3 -18 -9  6.39 

R, limbic lobe, parahippocampal gyrus (BA 19) 24 -54 -6 45 7.43 

R, limbic lobe, parahippocampal gyrus 33 -27 -15 32 5.89 

R, cerebellum, anterior lobe, culmen 24 -27 24  5.83 

L, frontal lobe, medial frontal gyrus -6 0 54 999 9.55 

R, frontal lobe, superior frontal gyrus 21 9 57  8.60 

L, frontal lobe, middle frontal gyrus -30 6 54  8.30 

R, frontal lobe, precentral gyrus (BA 44) 48 18 9 31 5.82 

L, frontal lobe, paracentral lobule (BA 6) -6 -27 75 76 5.85 

L, frontal lobe, precentral gyrus (BA 4) -24 -24 72  5.84 

L, parietal lobe, paracentral lobule (BA 6) -3 -33 69  5.71 

L, parietal lobe, superior parietal lobule -27 -51 63 31 6.64 

R, parietal lobe, inferior parietal lobule (BA 40) 39 -48 39 102 7.05 

R, parietal lobe, supramarginal gyrus (BA 40) 54 -45 27  5.81 

R, parietal lobe, postcentral gyrus 48 -18 24 57 7.30 

NP > P 

R, occipital lobe, middle occipital gyrus 36 -87 6 22 6.94 

R, occipital lobe, middle occipital gyrus 48 -63 -6 200 8.63 

R, temporal lobe, middle temporal gyrus 45 -54 9  6.35 

R, temporal lobe, middle temporal gyrus 39 -60 21  5.02 

R, cerebellum, posterior lobe, tuber 27 -75 -30 72 6.15 

L, cerebellum, anterior lobe, culmen -12 -51 -18 16 5.37 

R, limbic lobe, parahippocampal gyrus, amygdala 21 0 -15 22 5.83 

R, sub-lobar, extra nuclear 6 15 -6 19 5.60 

R, frontal lobe, middle frontal gyrus 30 36 -12 47 8.30 

L, frontal lobe, medial frontal gyrus -6 36 -12 34 7.01 
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Table 4. contd….. 

 

Talairach Coordinates Cluster Level Voxel Level 
Brain Region 

(x, y, z)[mm] No. of Voxels (pcorr < 0.0001) (T-Score) 

L, frontal lobe, middle frontal gyrus (BA 9) -42 36 36 23 5.45 

L, frontal lobe, middle frontal gyrus (BA 46) -45 42 18  5.18 

L, frontal lobe, middle frontal gyrus (BA 9) -48 33 30  5.10 

 

earlier work supports our findings on the interconnection 
among the occipital area, parietal cortices, and the FEF. 
However, brain activation in the thalamus, insula, and 
cingulate gyrus in both of our groups, i.e., areas previously 
associated with discomfort by those authors [41], suggest 
that the BOLD response therein is not caused by the TMS 
stimulus ; rather, it may be a consequence of any unpleasant 
sensation, such as the “tap” that participants felt during 
stimulation. 

Brainstem activation, in the midbrain area, was 
significant only in the phosphene-perceiving group (Fig. 2, 
Tables 1 and 4). This part of the midbrain has a conduit 
function; for example, the superior colliculus is directly 
associated with visual reflexes, and receives input from the 
eyes [42]. The red nucleus, another of its structures, controls 
motor coordination [43]. Therefore, the activation of the 
midbrain only in the phosphene group (Fig. 2, Table 1) 
conforms to their perceiving phosphene and their subsequent 
button-pressing, which, we believe, also was responsible for 
activating the motor area (L, medial frontal gyrus (BA 6)).  

The cerebellum was activated in both groups, but 
significantly more so in group 2 (Fig. 2, Table 1). 
Researchers believed that the cerebellum is devoted 
exclusively to motor functions [44]; recently, many other 
roles were proposed, including its serving as an internal 
timing system, assessing millisecond intervals [45]. Our 
results support the latter suggestion because we noted high 
activation in the cerebellum of the non-phosphene group that 
never undertakes any motor task during the scan; possibly 
this group is more attentive to the interval between the TMS 
pulse and image acquisition than the other group who might 
focus more on the phosphene sensation. 

Non-phosphene perceivers (group 2) exhibited larger 
deactivated brain areas than perceivers (group 1) (Fig. 2, 
Table 2). Previous fMRI studies suggested concomitant 
deactivation might represent the active suppression of neural 
activity in brain regions that are unimportant or may 
interfere with performing the required tasks [46-48]. In 
contrast, other work hypothesizes that fMRI deactivation 
may simply reflect a direct hemodynamic change in the 
vascular system in response to variation in the adjacent 
regional cerebral blood flow (rCBF), [49]. Additionally, our 
previous results suggest that changes in rCBF are task-
dependent [48]. Furthermore, previous concurrent repetitive 
TMS (rTMS) and PET studies demonstrated that rTMS can 
induce decrease or increase of rCBF, depending on the 
parameters of the stimulus [50, 51]. Therefore, the negative 
BOLD response we observed in group 1 may reflect local 
changes in rCBF induced by the TMS stimulus because the 

activated/deactivated areas appear to be balanced (Fig. 2, 
Table 1 and 2). However, for groups 2, neither of these two 
hypotheses explain the extended deactivated network; rather, 
they suggest a TMS-induced overall reduction in brain 
activity.  

The decline in the phosphene threshold with an increase 
in the static magnetic field (Fig. 1) may indicate a change in 
the performance of the TMS coil, or in cortical excitability 
under a high static magnetic field. Testing the coil’s 
performance with a pickup coil, in the same position relative 
to the TMS coil, inside and outside the MRI scanner, 
revealed no marked change in induced voltage, (data not 
shown), pointing to the second possibility. However, the 
small sample and the inaccuracy of the method of registering 
the phosphene threshold (self-reported) preclude a definitive 
statement. A longitudinal study encompassing more 
volunteers is needed to validate this preliminary finding; 
more precise results would emerge from motor-evoked 
potential measurements, obtained by applying TMS over the 
motor area, under different static magnetic fields. Another 
limitation of our study was associated with the behavioural 
differences between group during the experiment; while the 
perceiver group was actively engaged in a task (self-
monitored, pressing a button on seeing phosphene), the non-
perceiver group was not. Apart from likely differences in 
attention between the groups (that may well explain the 
BOLD differences in posterior brain regions), the perceiver 
group also performed an action (button press). These 
behavioural differences might have also contributed to the 
observed differences in the results, rather than uniquely 
affected by the difference in phosphene perception. 
Therefore, future studies where subjects indicate whether or 
not they saw phosphene, during TMS stimulus, are suggested.  

CONCLUSION 

Our work demonstrated that TMS modulates brain 
activity in interconnected areas in people who see phosphene 
and even in those who lack this perception. Brain activation 
in areas interconnected with the stimulated site seemingly 
present a higher T-score with larger cluster sizes (Fig. 2) 
than those near the site of stimulation, indicating that the 
effect of the TMS stimulus intensifies in these remote areas. 
Therefore, a sub-threshold stimulus will not greatly affect 
the stimulated area, but can significantly do so in remote 
brain regions. Moreover, the general variation in the patterns 
of brain activation/deactivation between people who 
perceive phosphene and those who lack this perception 
points to a possible difference in their neuronal network that 
may explain the cause of the difference in phosphene 
generation.  
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