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Abstract: Contralateral thalamus, the place of termination of spinothalamic tract, is affected in patients with pain. We 

employed single photon emission computed tomography (SPECT) to evaluate the thalamic perfusion in patients with 

spontaneous neuropathic pain. Ten patients with complex regional pain syndrome (CRPS) and eleven radiculopathiy 

patients were enrolled in this study. Regional cerebral blood flow of thalamus was assessed bilaterally by iodine-123-

labelled iodoamphetamine SPECT. To standardize the inter-patient data, we set a contralateral thalamic uptake index 

(CTUI) for assessing thalamic asymmetry. In one study, we found elevation of CTUI in patients with symptoms of 

neuropathic pain for less than 12 month, whereas no change was observed in the case of a longer lasting disease. An 

another study demonstrated decrease of CTUI after pain treatment, even though it was unrelated to the pain intensity prior 

to treatment. Our SPECT study revealed that neuropathic pain altered thalamic neuronal activity. CTUIs were increased in 

early stage of the disease but decreased as the disease progressed to the chronic stage. These results suggest that CTUI can 

be used to improve management of neuropathic pain for proper evaluation of spontaneous pain. 
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INTRODUCTION 

 Although neuromuscular disorders are manifested by a 

variety of clinical symptoms, pain is among those that are 

particularly hard to endure. Symptoms of pain are believed 

to have both central and peripheral origin and were studied 

with the help of neurophysiological and histocytochemical 

techniques [1, 2]. A number of animal models of spine-

related diseases, such as radiculopathy, spinal stenosis, etc., 

was also introduced to explore the pathways of pain and to 

examine other related changes [3-5]. These studies were 

primarily focused on spinal cord due to its accessibility. 

Limited attention has been paid so far to the brain as well as 
few studies were undertaken in clinical settings. 

 In the past decade, several brain imaging techniques, 

namely single photon emission computed tomography 

(SPECT), positron emission tomography (PET) and 

functional MRI (fMRI), emerged as powerful tools used to 

explore the biology of brain and to diagnose its pathological 

conditions [6-8]. Since fMRI technology is based on 

measuring hemodynamic response related to neural activity 

in the brain, it has advantages in detecting neuroanatomies 

responded to consecutive functional tasks such as pain 

stimuli. On the other hand, temporal resolution of SPECT 

and PET are similarly lower than fMRI technology and 

beneficial usage of these technologies are rather static brain  
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activation corresponding to spontaneous pain. Although PET 

enables better resolution, SPECT, is a more affordable and 

widely used tool. These techniques are informative, 

noninvasive and extrapolate brain function from changes in 

the regional cerebral blood flow (rCBF), since it is spatially 

and temporally coupled to brain activity. Then, three 
dimensional data are mapped onto the cerebral anatomy. 

 It was shown that several brain structures, such as 

bilateral thalamus, insular cortex, cingulate cortex, primary 

(SI) and secondary (SII) sensory cortex, are activated by 

noxious cutaneous stimuli in normal subjects [9-13]. Among 

them, thalamus is viewed as a particularly important one, 

because spinothalamic tract, a major pathway of pain, 

terminates into the medial and lateral thalamic nuclei [14]. 

Clinical studies, however, reported opposite findings. 

Iadarola et al. found significant decrease in thalamic activity 

contralateral to symptomatic side in PET scans of patients 

with neuropathic pain [15]. Similar results were obtained for 

the patients with chronic cancer pain [16]. Therefore, one 

might assume that changes of contralateral thalamic activity 

and chronic neuropathic pain are presumably linked. In the 

present study, we used SPECT to examine whether a 

relationship exists between contralateral thalamic activity 

and neuropathic pain in patients with CRPS and 

radiculopathy. 

MATERIALS AND METHODOLOGYS 

Subjects 

 Twenty-one patients with neuropathic pain including ten 
with complex regional pain syndrome (CRPS) (seven men 
and three women; aged 27-65 years; time since the onset of 
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symptoms 6-34 month) and eleven with either cervical or 
lumbar radiculopathy (six men and five women; aged 35-74 
years; time since the onset of symptoms 0.3-30 month) who 
agreed with the study protocol were examined. Twenty two 
healthy volunteers with matching sex and age served as 
control. All patients had spontaneous pain and sensory 
impairments only in unilateral upper or lower extremities. 
Pain status of each patient was evaluated by the visual 
analogue scale (VAS). rCBF of the contralateral thalamus 
was assessed by means of Iodine-123-labelled 
iodoamphetamine single photon emission computed 
tomography (SPECT). The absence of previous cerebral 
vascular and psychological diseases was confirmed using 
brain computed tomography or magnetic resonance imaging 
by a psychiatrist not involved into the present study.  

 All protocols were conducted in accordance with the 
recommendations outlined in the Declarations of Helsinki 
and were approved by the local Medical Ethical Committee. 
All subjects signed an informed consent form prior to the 
examination. 

Procedure 

 SPECT scanning started 10 min after intravenous 
injection of Iodine-123-labelled iodoamphetamine 
(111MBq) using an ultra high resolution fanbeam 
collimators equipped with a triple-detector SPECT device 
(Toshiba GCA9300A/HG, Tokyo, Japan). Size of field of 
view used in this study was 409.6mm x 409.6mm. Acquired 
SPECT images (128 x 128 matrices; 6 mm slice) were 
transferred to a Windows PC and then reconstructed from 
projection data by a filtered backprojection technique with 
Butterworth and Ramp filters according to Talairach brain 
atlas. 

Measurement of CTUI and Image Analysis 

 Activity of contralateral thalamus was evaluated by 
calculating the contralateral thalamic uptake index (CTUI). 
Its measurement consisted of the following steps: a) after 

setting the identical region of interest (ROI) over the both 
thalami, rCBF corresponding to it was measured bilaterally; 
b) thalamic perfusion was standardized by subtracting rCBF 
of the whole brain to rCBF in ipsilateral and contralateral 
thalami, respectively; c) CTUI was calculated as the ratio of 
contralateral to ipsilateral thalamic uptake (Fig. 1A). ROI 
was then separated into the medial and lateral subdivisions 
using the three dimensional stereotaxic ROI template 
(3DSRT) (Fig. 1B). Indexes of both subdivisions (CTMUI 
and CTLUI respectively) were analyzed employing “NIH 
image” software (developed at the Research Service Branch 
(RSB) of the National Institute of Mental Health (NIMH), 
part of the National Institutes of Health (NIH)). Besides, 
relations between contralateral thalamic uptake index versus 
disease duration and pain intensity were examined. In 
controls, the indexes were calculated as the ratio of left to 
right consecutive thalamic uptakes. 

Statistical Analysis 

 Results were analyzed using Wilcoxon matched pairs and 
Mann-Whitney tests. 

RESULTS 

 In controls, all CTUI measurements showed symmetric 
thalamic perfusion (1.17±0.63). 

CTUI and Duration of Disease 

 The most significant increase of CTUI was observed in 
patients with duration of symptoms of pain for less than 12 
months. The average of CTUI was 1.94±1.01, P=0.0166 and 
in some cases even as high as >3. In contrast, the average of 
CTUIs in patients with a longer lasting disease (more than 12 
month) was similar to controls (1.06 ± 0.45) (Fig. 2).  

 Subdivision analysis was resulted no significant change 
in both CMTUI and CLTUI in patients with duration of 
disease for more than 12 month compare to controls. 
Although not statistically significant (P=0.067), an increase 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Standardized brain SPECT images showing presets of ROIs template of 3DSRT (A) and subdivisions of thalamus used for CTUI 

measurements (B). ROI over thalami is outlined in black. Whole thalamus is marked as (W), medial and lateral parts as (M) and (L) 

respectively. 

B
A

B

MM
LW



184    The Open Neuroimaging Journal, 2010, Volume 4 Ushida et al. 

of CMTUI, but not of CLTUI, was observed in patients with 
duration of disease for less than 12 month (Fig. 3).  

CTUI and Intensity of Pain 

 In patients with either CRPS or radiculopathy, CTUI and 
pain intensity, measured by VAS, did not show a clear 
correlation between each other (VAS=3.5-7.8, average 5,4) 
(VAS=3.0-7.5, average 4.7), respectively (Fig. 4).  

DISCUSSION 

 We employed SPECT technique to determine regional 
concentration of radionuclide in thalamus as a function of 
time and then to compare its values in normal subjects versus 
in patients with neuropathic pain. It was observed that 
contralateral thalamic uptake index (CTUI) is elevated in 
patients with symptoms of neuropathic pain for less than 12 
month. It was also detected that CTUI decreases as a result 
of pain treatment and that its values in patients with 
symptoms of pain for more than 12 month are in the range of 

those in control subjects. This attenuation of the contralateral 
thalamic activity in chronic pain status has been reported in 
other investigators. This inhibited thalamic activity might be 
related to pain pathogenesis, a reversal of this change would 
be expected as a correlate of pain relief. Accordingly, 
thalamic hypoactivity has been shown to be reversed by a 
number of analgesic interventions, from lidocaine blocks to 
neurosurgical procedures [17-22].  

 Activation of thalamus in response to acute noxious 
stimulation as a phenomenon of functional reorganization of 
central sensory neurons was described previously in both 
human and animal studies [23-27]. The consensus, however, 
whether the activation occurs uni- or bi-laterally was not 
reached. It was also not determined what side of the brain, if 
uni-laterally, is activated. Our results show that the 
methodology used to determine thalamic activation by 
measuring the regional blood flow is of critical importance 
here. We observed that raw data of thalamic blood flow 

 

 

 

 

 

 

 

 

 

Fig. (2). Scatter gram showing relation between CTUI and disease duration. A significant increase of CTUI is seen for patients with the 

duration of disease for less than 12 month. 

 

 

 

 

 

 

 

 

 

Fig. (3). Changes of CTUI in medial (CMTUI) and lateral (CLTUI) portions of contralateral thalamus in relation to disease duration. An 

increase of CTUI in medial contralateral thalamus is observed in the case of disease duration for less than 12 month (A). No changes 

between medial and lateral portions are detected in the case of disease duration for longer than 12 month (B). 
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obtained from different subjects are not comparable due to 
significant individual variations. Therefore, we took a 
different approach and evaluated CTUI by comparing ratios 
of the total cerebral blood flow against the thalamic blood 
flow. Using this technique, it was possible to obtain data 
indicative of an involvement of contralateral thalamus in 
neuropathic pain. This conclusion is supported by the results 
of electrophysiological and morphological experiments in 
primates showing that sensory signals, including noxious 
inputs, terminate mainly in contralateral thalamus, with less 
than 10 percent of sensory afferents projecting ipsilaterally 
[28]. Furthermore, we found an increase of CTUI in the 
medial portion of contralateral thalamus (CMTUI), but not in 
the lateral portion, (CLTUI). In this respect, it should be 
mentioned that medial thalamus is viewed as a portion of 
thalamus linked to the “affective/motivational” aspect of 
pain, while lateral is related to “discriminative” pain. 
Therefore, it is likely that the former aspect of pain sensation 
is involved the most in patients with neuropathic pain. 
Additional studies that employ the fine spatial resolution 
brain imaging tools should help in clarifying this issue 
further. 

 Interestingly, we observed that activation of contralateral 
thalamus depends on the duration of disease and tends to 
decrease after 12 month since patients report their first 
complaints. How this observation can be explained? It is 
possible that sensory cortex adapts to the input of pain in 
such a way that hyper activation of thalamus for nociceptive 
transmission and cognition is no longer necessary [29] and 
/or that continuous pain affects intra-cranial blood 
distribution and thus results in the sensory blood uncoupling 
near the activated region [15]. It should be mentioned, 
however, that the pattern of thalamic reaction in this group 
of patients is likely to be a very complex issue that requires 
additional studies considering the possible involvement of 
other regions of the brain. In recent study, Honda et al. [30] 
focused on to prefrontal area and cingulate area, and found 
reduction of cerebral blood flow in chronic pain patients as 
well.  

CONCLUSION 

 We utilized contralateral thalamic uptake index (CTUI) 
to detect changes of thalamic activity in neuropathic pain. 
CTUIs were increased in the early stage of the disease but 
decreased as the disease progressed to the chronic stage. 
Present results suggest that the activity of contralateral 
thalamus may have a role in development/maintenance of the 
chronic pain conditions. 
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Fig. (4). Scatter gram demonstrating relation between CTUI and pain intensity (VAS). No correlation between pain CTUI and VAS can be 

found. 
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