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Abstract: Pain modulation is an integral function of the nervous system. It is needed to adapt to chronic stimuli. To gain 

insights into pain suppression mechanisms, two studies concerning the suppression of the feeling of pain with different 

stimulation modalities (heat vs. electrical stimuli) but using the same stimulation paradigms were compared: 15 subjects 

each had been stimulated on both hands under the instruction to suppress the feeling of pain.  

Anterior insula and DLPFC activation was seen in both single modality studies and seems to be a common feature of pain 

suppression, as it is absent in the interaction analyses presented here.  

During the task to suppress the feeling of pain, there were no consistent activations stronger under thermostimulation. But 

during electrostimulation, there was significantly stronger activation than during thermal stimulation in the caudate nu-

cleus bilaterally and in the contralateral posterior insula. This may be attributed to the higher sensory-discriminative con-

tent and more demand on subjective rating and suppression of the painful electrical stimulus, compared to thermostimula-

tion. The caudate nucleus seems to play an important role not only in the motor system but also in the modulation of the 

pain experience. 
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INTRODUCTION 

 While the perception of acute pain is essential to ensure 
the integrity of the organism [1], most chronic pain is useless 
[2] and may cause disabling illness. The modulation of pain-
ful stimuli is accomplished by peripheral as well as spinal 
and cerebral up and down regulation [3] of the nociceptive 
inputs. A diminished capacity to suppress pain may be hy-
pothesized to predispose to chronic pain syndromes.  

 The processes underlying pain suppression are therefore 
interesting in this context.  

 There are many ways to simulate clinical pain in experi-
mental conditions: 

 Noxious chemical stimulation [4, 5] or muscle ischemia 
[6] have been used. Noxious heat stimulation can be admin-
istered by a thermode [7-12] or by a laser [1, 13, 14]. Electri-
cal stimulation [14-19] or mechanical stimulation [20, 21] 
have also been used. 

 The conduction of the stimuli generally has been differ-
entiated into two neural pathways: Medial and lateral path-
ways [22, 23] are distinguished. 

 Receptors that are sensitive to pain and temperature be-
long to the medial pain system. They transduce via A  and  
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C-fibres [24] to the contralateral spinothalamic tract and fur-
ther on via medial thalamus to the anterior cingulate cortex 
(ACC), periaqueductal grey (PAG) and insula to the prefron-
tal cortex [25]. The latter are  responsible for affective and 
emotional aspects [26] of the pain experience.  

 The lateral pain system transduces input from low 
threshold mechanoreceptors (touch and sense such as vibra-
tion and kinaesthesia) [24] by means of A  and A  fibres to 
the medial lemniscus and on to thalamus and somatosensory 
cortex, dealing with sensory-discriminative aspects [22]. 

 Our special interest was to explore the cerebral regions 
involved in pain suppression. Own studies with electrical 
[18] and thermal [7] stimulation show differing results: Dur-
ing the task to suppress the feeling of electrically induced 
pain, subjects showed cerebral activation in prefrontal cortex 
and caudate head and thalamus. In the same task during 
thermal stimulation, however, caudate, insular and prefrontal 
cortex activation was detected. However, no formal statisti-
cal comparison had been done yet. 

 There already have been pain studies comparing different 
stimulation modalities [6]. The only fMRI study comparing 
thermal and electrical stimulation, however, found no rele-
vant cerebral activation during thermal stimulation [12]. 

 Since functioning pain suppression is supposed to be a 
prerequisite for wellbeing despite repeated noxious inputs, 
the underlying mechanisms have to be understood in healthy 
subjects. Thus the results of studies on thermal and electrical 
stimulation during the task to suppress the feeling of pain are 
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now compared, both on a functional and on a formal, i.e. 
statistical, level. We hypothesized that the different proper-
ties of the stimulation method should manifest in different 
cortical activation.  

METHODS  

Single Modality Studies 

 Since the results of the single modality studies have al-
ready been reported in detail [7, 18], only a short summary 
of the procedures is given. 

Subjects 

 After approval of the local ethics committee and in ac-
cordance to the Declaration of Helsinki, 15 healthy, right 
handed volunteers had been recruited for each arm of the 
study. 

Data Acquisition 

 FMRI data were acquired on a 1.5T MR scanner (Magne-
tom Symphony, Siemens, Germany). 

 Blood Oxygen Level Dependent (BOLD)-contrast was 
measured with an EPI sequence with 28 axial slices of 5mm 
thickness, 10% gap, and field of view 230mm. TR was 
2600ms, TE 60 ms, Flip angle 90°. Resolution was 64 x 64. 
We used Cartesian read-out and a band-width of 2442 Hz/ Px. 

 Anatomical data were acquired using a sagitally oriented 
T1 weighted MP RAGE 3D sequence (magnetization pre-
pared rapid acquisition of gradient echo [27] equivalent to a 
fast SPGR-sequence) with isotropic 1mm  voxels and a T2 
turbo spin echo sequence (TR 2530ms, TE 99ms, FOV 
230mm, matrix 256) with the same slice orientation as the 
BOLD Sequence. 

Experimental Protocols 

 The subjects were stimulated on their index finger tips on 
both sides subsequently; the order was assigned randomly.  

 Because of high interindividual differences of skin thick-
ness and susceptibility to pain, individual thresholds estab-
lished directly preceding the fMRI-experiment were used. 
The stimulus intensities were tested in a ramp style pattern 
with slowly rising stimulation levels as described in detail [7, 

18] with the experimenter and the subject facing each other 
outside the scanner room. The level was readjusted again in 
position in the scanner to take into account the change of 
pain threshold during distraction [28].   

 Rest: no stimulation / indifferent temperature. 

 Pain: the strongest painful stimulation the subject is able 
to endure for up to 52s.  

 For fMRI the protocol was presented on a PC, running 
ERTS (BeriSoft AG, Frankfurt, Germany) synchronized with 
the MR-scanner. 

 Electrical stimulation was administered to the index fin-
ger via 2 MRI-compatible adhesive ECG skin electrodes, 
placed 5 cm apart, by an electroneurograph (Myograph DA1 
Tönnies, Freiburg, Germany) positioned outside the scanner 
room. The active electrode was placed at the volar tip of the 
index finger. 

 The pulse duration was set to 0.2 ms, 10 pulses per second.  

 Thermal stimulation was presented by a MRI-compatible 
Peltier thermode with a stimulation area of 30x30mm, on 
which the volar tip of the index finger was placed. The gen-
erator (Thermal Sensory Analyser II, Medoc Advanced 
Medical Systems, Rimat Yishai, Israel) was positioned out-
side the scanner room. The stimulation was applied with 
rising temperatures, until the desired maximal tolerable pain 
was reached. 

Stimulation Paradigms 

 The experiment was set to investigate cortical correlates 
of suppression of tonic painful stimuli. 

 The stimulation levels were chosen after another experi-
ment with different stimulation levels. The maximally toler-
ated pain, however was the level for which both thermal and 
electrical stimulation aimed in this study. The tonic painful 
stimulation used stimulus duration of 52 s of maximum in-
tensity with the task to suppress the feeling of pain. It started 
with a rest phase (26 s) before each stimulus phase. The 
whole set consisted of 6 repetitions of rest and stimulation. 
(see Fig. 1). 

 For the purpose of analysis, the tonic-painful stimulation 
paradigm was divided into the first 13s and the following 39s 

 

 

 

 

 

 

 

Fig. (1). Stimulation paradigm during the trials: Alternating phases of rest and painful stimulation. The tonic stimulation was divided into an 

early and late phase for purposes of analysis; the stimulation, however, was the same. 
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(tonic pain early, abbreviated tpe and tonic pain late, tpl). 
The duration of the early phase was deducted from experi-
ence in pre-trials, where the time to achieve suppression of 
pain was between 10 to 15 seconds which is similar to the 
early phase reported by others [29].  

Suppression of Pain 

 The subjects had to suppress the feeling of pain every 
time it arose. They were free to choose the technique for 
suppression. Some examples were given: Mental imagery 
(“Think of your last holiday”), depersonalisation techniques 
(“imagine extending your finger and shoving the pain away 
from you”) or distracting by other means.  

Rating the Pain Experience 

 Although there have been recommendations made for 
simultaneous rating [9], own experience [30] showed the 
possibility of import of motor task related activation into an 
otherwise sensory paradigm. Therefore we decided to rate at 
the end of the session after the experiment. Subjects were 
familiar with a four level rating scale from a previous ex-
periment using graded stimuli: The levels were modelled 
after established “anchors” [31] and were explained as fol-
lows: 

Level 1: No stimulation (This corresponds to the rest condi-
tion), 

Level 2: A slight sensation, securely above the perception 
threshold, 

Level 3: A strong sensation, but not painful, 

Level 4: Pain. 

 The levels of subjective experience (pain level) after 
suppression of pain under constant stimulation were reported 
verbally immediately after termination of the experiment.  

Data Analysis 

 Differences regarding psychophysical or demographic 
parameters were computed using the t-test and Mann-
Whitney test with p< 0.05 as a threshold for significance. 

 For the fMRI analysis of the trials and the group com-
parison, SPM 5 (Wellcome Department of Imaging Neuro-
science, London, UK) [32, 33] was used. We used the scan-
ner-inherent motion correction together with the motion cor-
rection of SPM. Afterwards the scans were normalized to the 
MNI-Template [34] and smoothed with an isotropic Gaus-
sian kernel of 8mm full-width at half maximum. Standard 
high- and low-pass filtering of SPM was used. For high-pass 
filtering: Session cut-off period was set to 156s. The low-
pass filter was set to the option hrf (hemodynamic response 
function). 

 A group analysis using the random effects model was 
conducted to avoid problems with group comparisons [35]. 
The cluster size had to exceed 10 voxels, a voxel threshold 
of p<0.001 uncorrected was applied to the resulting datasets; 
only activation appearing during both right and left hand 
stimulation (for lateralized functions the contralateral activa-
tion also counted) on the maps exceeding this threshold were 
taken to be significant.  

 Areas of activation were identified with the help of the 
Talairach Daemon [36]. 

 The contrasts are defined as follows: 

 Primary contrasts, they exist for right and left side stimu-
lation: 

 Tonic pain early versus rest: Tpe-r (this refers to the first 
13 seconds). 

 Tonic pain late versus rest: Tpl-r (including the 14
th

 to 
52

nd
 second). 

 Secondary contrasts, they refer to the comparison of 
thermal and electrical stimulation: 

 Areas activated more in thermal than electrical stimula-
tion: T-E. 

 Areas activated more in electrical than thermal stimula-
tion: E-T. 

 The presented interaction analyses uses a primary and a 
secondary contrast in conjunction: it takes data from a pri-
mary contrast and explores which areas are more active dur-
ing thermostimulation or electrostimulation. 

RESULTS 

Biometrical and Psychophysical Data 

 The group undergoing electrical stimulation comprised 
10 males and 5 females, aged 25-64 years (mean 35.5 y). 
The thermally stimulated group consisted of 8 males and 7 
females, aged 19 to 47 years (mean 32.8 y). The  age differ-
ence was not significant (t-Test, p=0.45). 

 The perception during the suppression of the tonic pain-
ful stimulation was rated with 2 as a median both during 
electrical and thermal stimulation (Mann-Whitney test, not 
significant, p=0.77).  

fMRI Results 

 Areas activating more in electrostimulation than during 
thermostimulation: 

 Comparing the two stimulation modalities, several areas 
had significantly stronger activations during electrical stimu-
lation than during thermostimulation. In the early phase 
(contrast Tpe-r), multiple foci of activation bilaterally in the 
whole caudate nucleus and posterior insula were detected 
(see Table 1a) and Fig. 2). 

 In the late phase (contrast Tpl-r), only contralateral poste-
rior insular activation was consistently activated (Fig. 3). 

 Areas activating stronger during thermostimulation than 
during electrostimulation: 

 Here, in the early phase, several areas showed activation 
(see Table 1b)). However, since these areas were activated 
inconsistently (only during left or right hand stimulation), 
they are regarded as not relevant. 

 Single modality data (electrostimulation only or thermo-
stimulation only) are available as supplementary material in 
Table 2. 

DISCUSSION 

 The subjects of both studies had succeeded similarly to 
suppress the feeling of pain during tonic stimulation with 
different modalities. However, statistical comparison of the 
brain areas activated during the suppression task showed 
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significant differences: During electrical stimulation, caudate 
nucleus and posterior insula showed stronger activation than 
during thermal stimulation.  

Posterior Insula 

 Conscious pain processing and subjective evaluation of 
heat pain have been shown to correlate with activation in the 
anterior insula [37, 38]. This activation has been present in 
our single modality studies [7, 18], but seems to be common 
to both, so that it is absent in the exploration of the differ-
ences undertaken here.  

 The objective intensity of a heat pain stimulus correlated 
with activation in the posterior insula [37]. Other studies had 
shown posterior insular activation, when attention was di-
verted from the painful stimulus [39] or during comparison 
of controlled and uncontrolled pain [40]. 

 The current data show that during the task to suppress the 
feeling of pain, posterior insular activation is stronger in the 
electrostimulation experiment. This may be interpreted as a 
direct effect of the different stimulus properties: Elec-
trostimulation is known to excite predominantly low thresh-
old mechanoreceptors as well as A  and A  fibres, resulting 
in input to the SI and SII via lateral pain system [22, 41]. 
Contrarily, thermostimulation results in selective activation 
of A  and C fibres, resulting in input to the ACC and ante-
rior insula via medial pain system [26].  

 The stated physiology in turn results in more sensory-
discriminative processing via lateral pathway during elec-
trostimulation and may be responsible for the predominant 
activation of posterior insula (SII) during electrostimulation. 
Posterior insula activation has been linked to sensory dis-
criminative aspects of pain perception [42, 43] and predomi-
nantly sensory and motor connections that include SI and SII 
and motor and premotor areas [44]. 

 Similarly, in a comparison between impact and thermal 
pain [43], more pronounced posterior insular activation dur-
ing impact stimulation has been shown. It has been specu-
lated to originate from stronger mechanoafferent input dur-
ing the ballistical stimulation. 

Laterality 

 Many studies show right insular activation during painful 
stimulation [40, 45], while in our study, the activation seems 
to be localized contralaterally, as has been reported for ther-
mostimulation [39, 46]. However, this may be due to the 
subtraction process: We show that contralateral insula acti-
vates in E-T, while the other studies concentrated on single 
modality perception. So, perhaps the distinguishing factor of 
electrical stimulation (more sensory-discriminative compo-
nents) results in contralateral insular activation that has 
shown to be a feature of the subjective rating process [38]. 

Caudate Nucleus 

 In recent studies, activation of the caudate nucleus has 
been shown during control and suppression of stimuli [47, 
48], especially of pain [7, 18]. Activation of the caudate nu-
cleus contributes to eliciting or suppression of specific pat-
terns of motor behaviour in response [48], is activated during 
evaluation of the spatial locations of noxious stimuli [49] or 
during expectancy of pain [50]. Furthermore, caudate activa-

tion has been shown during mechanical [51], but not thermal 
stimulation [52]. Also, lower activation has been detected in 
the caudate nuclei of patients with fibromyalgia [53] or 
chronic fatigue [54]. To summarize, the caudate nucleus 
seems to play an important role in both the sensory process-
ing and suppression of pain. A lack of caudate activation is 
associated with chronic pain or fatigue.  

 In the present study, caudate activation is a distinguishing 

feature in the early phase of the tonic painful electrostimula-

tion during the task to suppress the feeling of pain. Together 

with the recent reports of the literature cited above, the cau-

date activation therefore is interpreted as a feature of the task 

to suppress the feeling of pain. This may be due to the effort 

[7] needed for suppression.  

 Another explanation could be the higher sensory-

discriminative content of electrically induced pain. Before it 

is suppressed, therefore, more sensory processing takes 

place, so that this stronger caudate activation could be inter-

preted as a correlate of this sensory activity. 

 The activation shown in Fig. (2) seems to extend into the 

ventricle. This, however may be due to the process of 

smoothing. The activation has been labelled with the Ta-

lairach daemon. 

GENERAL CONSIDERATIONS 

Success of Suppression 

 In both the electrically and thermally stimulated experi-

ments, subjects felt able to suppress the feeling of pain. They 

reported similar levels of pain perception during suppression, 

regardless of the stimulation modality. The differing cortical 

activation therefore must be attributed not to the pain level, 

but to other aspects of the pain perception or to the suppres-

sion process itself. However, since the reporting of the sup-

pression effect was done after the cessation of the experi-

ment, the results could be confounded by pain memory dif-

fering from the real sensation. 

Missing Homogeneity of the Study Population 

 Since the studies were not performed on the same sub-

jects, there is the danger of inter subject differences taking 

precedence over the studied variables. However, since we 

undertook only interaction analyses (we compared the differ-

ences, e.g. Tpe-r and not the raw values), the influence of the 

subject is minimized. 

Possible Anticipatory Activation 

 Since the time course of the stimulation paradigm was 

fixed in the experiments, subjects could anticipate the next 

stimulation course. However, the task was to suppress the 

feeling of pain when it arose, and not to eliminate it alto-

gether. Own subjective experience agrees with that: The 

painful stimulation every time came like jolt; to accomplish 

suppression took several seconds. Caudate activation has 

been shown during expectancy of pain [50]. However, since 

the expectancy is thought to be the same in both experiments 

regardless of stimulation modality, this (common) effect 

should be eliminated in the interaction analysis focussing on 

the differences between the modalities presented here. 
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Thresholds 

 The experiments were performed on both sides with a 
threshold for the single evaluation of 0.001 uncorrected.  

 Only activation present during stimulation of both sides 
was accepted: Coordinates on the y- and z-axis had to match. 
Identical x-axis coordinates during both sides of stimulation 
mean a lateralized function, whereas opposite x-axis coordi-
nates point to activation of the contralateral (or ipsilateral) side. 

 By asking for activation to occur during both right and 
left side stimulation, a rather conservative exploration was 
performed.  

Differentiation of the Stimulation Phases 

 For the purpose of analysis, the tonic stimulation phase 
has been divided, as has been reported by others [55], who 
attributed late phase changes to opiate mediated effects. The 
duration of the early phase was deducted from experience in 

Table 1. Comparison of Activation During Suppression of Pain Under Tonic Stimulation with Different Modalities. Voxel Thresh-

old p<0.001 Uncorrected, Cluster Threshold > 10 Voxels 

 All (up to 5) Local Maxima of Clusters. (Submaxima Only in Brackets Without Coordinates). Only Activation Visible 

During Both Stimulation Sides is Taken as Relevant and Printed Bold 

a) Areas Activating More in Electrostimulation Than During Thermostimulation 

Stimulus Side, 

Contrast 

Brain Region Activated Anatomical Description 

of the Local Maximum 

Brod-mann 

Area 

Coordinates z-value 

Bilateral caudate head Rt Caudate   18,24,12 4.46 

Contralateral posterior insula  Lt insula 13 -38,-10,6 4.36 

Ipsilateral (also contralateral) caudate body Rt Caudate  18,8,20 4.32 

Ipsilateral posterior insula  Rt insula 13 42,-10,18 4.28 

Right Tpe-r 

Ipsilateral (also contralateral) caudate tail Rt caudate  26,-38,8 4.24 

Contralateral pulvinar (incl. caudate body) Rt thalamus  12,-22,22 3.99 

Contralateral caudate head Rt caudate  6,22,0 3.96 

Contralateral caudate tail Rt caudate  22,-38,12 3.68 

Contralateral posterior insula Rt insula 13 46,-16,18 3.62 

Left Tpe-r 

Ipsilateral caudate body Lt caudate  -10,0,24 3.44 

Right Tpl-r Contralateral PCG (incl. posterior insula) Lt PCG 43 -50,-14,18 3.79 

Contralateral posterior insula (incl. PCG) Rt insula 13 46,-16,20 4.34 

Contralateral sensorimotor cortex PCG 1 54,-18,50 4.21 

Left Tpl-r 

Ipsilateral caudate tail Lt Caudate  -34,-36,4 3.98 

 

b) Areas Activating More in Thermostimulation than During Electrostimulation 

Stimulus Side, 

Contrast 

Brain Region Activated Anatomical Description 

of the Local Maximum 

Brodmann Area Coordinates z-value 

Right Tpe-r Contralateral occipital lobe  Lingual Gyrus 19 -14,-64,4 3.35 

Contralateral precuneus Rt MTG 39 36,-70,28 4.1 

Ipsilateral sensorimotor cortex Lt PCG 2 -50,-28,38 4.01 

Ipsilateral sensorimotor cortex Lt preCG 4 -30,-22,60 4.0 

Contralateral dorsolateral prefrontal cortex Rt IFG 9 48,4,30 3.9 

Left Tpe-r 

Ipsilateral dorsolateral prefrontal cortex Lt IFG 9 -52,4,22 3.32 

Right Tpl-r No suprathreshold clusters     

Left Tpl-r No suprathreshold clusters     

Rt right, Lt left, PCG postcentral gyrus, MTG middle temporal gyrus, preCG precentral Gyrus, IFG inferior frontal gyrus. 
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pre-trials, where the time to achieve suppression of pain was 
between 10 to 15 seconds which is similar to the early phase 
reported [29].  

Missing Activation of Dorsolateral Prefrontal Cortex 
(DLPFC) 

 Frontal lobe activity generally has been related to cogni-

tive and attentional processing of painful stimuli [56] or to 

reappraisal [57]. 

 DLPFC activations have been found in our studies in 

single modality analysis [7, 18], but they were not found in 

the presented interaction analysis because activation due to 

the same task in both studies is subtracted. Seemingly, the 

effort of suppression therefore is similar during both electri-

cal and thermal stimulation. This lends power to the second 

argument favouring the sensory content of the stimuli as the 

cause for caudate activation during electrostimulation. 

CONCLUSIONS 

 Anterior insula and DLPFC activation was seen in both 
single modality studies and seems to be a common feature of 

pain suppression, as it is absent in the interaction analyses 
presented here.  

 There were no consistent activations stronger during the 
suppression of pain under thermostimulation. But during 
electrostimulation, there was activation significantly stronger 
than during thermal stimulation in the caudate nucleus 
bilaterally and in the contralateral posterior insula. This may 
be attributed to the higher sensory-discriminative content 
and more demand on subjective rating and suppression of the 
painful electrical stimulus, compared to thermostimulation. 

SUPPLEMENTARY MATERIAL 

 Supplementary material is available on the publishers 
Web site  along with the published article. 
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“left” refer to the stimulated side. 
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