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Abstract: Baseline cerebral arterial blood volume (CBVa) and its change are important for potential diagnosis of vascular 

dysfunctions, the determination of functional reactivity, and the interpretation of BOLD fMRI. To quantitative measure 

baseline CBVa non-invasively, we developed arterial spin labeling methods with magnetization transfer (MT) or bipolar 

gradients by utilizing differential MT or diffusion properties of tissue vs. arteries. Cortical CBVa of isoflurane-

anesthetized rats was 0.6  1.4 ml/100 g. During 15-s forepaw stimulation, CBVa change was dominant, while venous 

blood volume change was minimal. This indicates that the venous CBV increase may be ignored for BOLD quantification 

for a stimulation duration of less than 15 s. By incorporating BOLD fMRI with varied MT effects in a cat visual cortical 

layer model, the highest CBVa was observed at layer 4, while the highest BOLD signal was detected at the surface of the 

cortex, indicating that CBVa change is highly specific to neural activity. The CBVa MRI techniques provide quantified 

maps, thus, may be valuable tools for routine determination of vessel viability and function, as well as the identification of 

vascular dysfunction.  
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INTRODUCTION 

 The adult human brain represents ~2% of body weight, 

but receives ~15% of total cardiac output. Cerebral blood 

flow (CBF) is closely related to cerebral blood volume 

(CBV), which can be divided into arterial and venous blood 

volume. Arterial vessels including arteries, arterioles and 

pre-capillary small arterioles dilate and constrict actively 

responding to internal and external perturbations, while 

venous vessels including veins, venules and post-capillary 

small venules respond passively. Vascular volume changes 

in the brain are important for regulation of blood flow under 

conditions of both normal and abnormal physiology. It is 

generally thought that dilation and constriction of arterial 

blood vessels is the major mechanism that maintains CBF 

within an autoregulatory range [1], and that adjusts blood 

flow to perturbations such as those induced by CO2 changes 

and neural stimulation. Thus, arterial CBV change is 

expected to be more sensitive than total CBV change in 

assessing cerebrovascular regulation, as well as in 

identifying regions of abnormality. For example, in ischemic 

regions, arterial blood vessels dilate to compensate for 

reduced blood pressure, making quantitative mapping of 

CBVa a promising diagnostic tool. However, CBVa has 

rarely been investigated, possibly due to difficulties involved 

in compartment-specific blood volume measurements and 
the lack of gold-standard methods for comparison.  

 Arterial CBV can be mapped with arterial spin labeling 
(ASL). ASL is achieved with endogenous magnetic labeling 
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by either virtually continuous (i.e., long duration) application 
of radiofrequency (RF) labeling between acquisitions 
(referred to as “continuous ASL”) [2, 3] or by short RF 
pulse(s) (referred to as “pulsed ASL”) [4-6]. Labeled spins 
will reside mostly in arterial vessels and tissue due to short 
half-life (spin-lattice relaxation-time) of labeled spins. For 
the quantification of CBF, it has been of great interest to 
remove the contribution of arterial blood signals, which can 
be achieved by using a post-labeling delay time [7] or by 
employing small bipolar gradients [8] (referred also to as 
diffusion gradients), which dephase rapidly moving spins 
[9]. Conversely, these arterial contributions can be exploited 
to quantitatively map CBVa. In studies without the removal 
of arterial signals, the ASL signal is a sum of arterial blood 
and tissue signals, which can be deconvoluted with dynamic 
ASL models [10, 11]. Thus, CBVa may be determined from 
ASL data obtained at multiple spin labeling times. 
Alternatively, arterial and tissue ASL signals obtained at a 
single spin labeling time can be separated with diffusion 
gradients [12] or the magnetization transfer (MT) effect [13], 
rendering simultaneous measurement of CBVa and CBF.  

 Since significant increase in CBF during stimulation is 
highly associated with arterial dilation, functional change in 
CBVa is expected, However, CBVv comprises ~60-80% of 
total CBV under normal baseline conditions [14-17], thus 
vascular responses assume the dominance of CBVv changes 
during stimulation - with minimal CBVa changes in 
biomechanical models of functional MRI (fMRI) (such as 
the balloon model) [18, 19]. According to vascular 
physiology studies, however, local and upstream arterial 
vessels rigorously dilate during increased neural activity 
[20]. Thus, it would be valuable to know the portion of 
CBVa change that contributes to overall stimulus-induced 
CBVt change to gain insight into neurovascular control 
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mechanisms. Therefore the measurement of CBVa vs. CBVv 
change is helpful to understand BOLD signals and could 
quantify the vascular responses of neural activity. Thus, we 
measured total and arterial CBV using contrast agent and 
ASL with MT effect, respectively, and compared CBVa vs. 
CBVv (= CBVt – CBVa) changes during stimulation. Since 
the most widely-used BOLD signal is closely dependent on 
CBF and venous (not total) CBV [21], the relationship 
between CBVa and CBVv changes makes a major impact to 
BOLD quantification. In order to further obtain functional 
CBVa response with high temporal resolution, a new MT-
varied blood oxygenation-level dependent (BOLD) fMRI 
technique was developed to determine both CBVa and 
BOLD fMRI responses [22]. From fMRI data acquired at 
multiple MT levels, MT-independent arterial signal can be 
separated from MT-dependent tissue (and venous) signals.  

 In this review article, we present the theoretical basis of 
quantitative CBVa measurement with MT-varied ASL and 
MT-varied BOLD fMRI techniques, and summarize our 
lab’s findings of CBVa measurements obtained from 
isoflurane-anesthetized rats and cats at 9.4 T. Arterial vs. 
venous CBV changes during stimulation were measured to 
determine relative contribution of CBVa to CBVt change. 
Then, the implication of our finding for BOLD 
quantification was discussed. To further examine the 
importance of functional CBVa mapping, the spatial 
specificity of CBVa change was also examined.  

THEORETICAL BASIS OF ARTERIAL CBV MEAS-
UREMENTS 

 It is assumed that MRI signals in a given pixel originate 
from four compartments including extravascular tissue, 
arterial blood, capillary, and venous blood. Under the 
assumption that water in capillary blood freely exchanges 
with tissue water, the spin status in venous blood could be 
similar to those in tissue generated by upstream free 
exchange, therefore components from tissue, capillaries and 
venous vessels will be indistinguishable, thus these are 
treated together as one compartment. Arterial spin fraction a 

can be determined by separating arterial blood from tissue 
signals (see below), then converted into physical volume 
CBVa, considering differences in spin density between tissue 
and blood pools; CBVa values (units of ml blood/g tissue) 
can be obtained from a by multiplying a tissue-to-blood 
partition coefficient. It is noted that the tissue-to-blood 
partition coefficient of 0.9 ml/g for the entire brain [23] was 
used in our studies. Thus, the CBVa value in gray matter is 
slightly underestimated [23]. The CBVa value measured by 
MRI represents the blood volume within arterial vessels of 
all sizes, and includes the portion of capillaries carrying 
blood water before it exchanges with tissue water; the 
diameter of arterial vessels in the parenchyma ranges from 
30-40 μm in intracortical arterioles to 4-6 μm in capillaries 
[24]. 

Quantitative CBVa Measurements: ASL with MT or 
Bipolar Gradients  

 Spin-labeled (e.g., inversion) arterial blood water travels 
into the capillaries and exchanges with tissue water. Even if 
capillary water does not completely exchange with tissue 
water (which is likely the case), any magnetic label 
remaining in the capillaries and venous vessels is reduced by 

T1 and T2 relaxation. Since the longitudinal component of 
magnetization decays as exp(-t/T1 of blood), where t is the 
transit time of spins from the labeling plane, and T1 of blood 
is 1.2 – 2.2 s (dependent on magnetic field), the signal 
contribution from venous blood will be small. Any 
remaining venous blood signals can be further reduced by T2 
decay, since T2 of venous blood is short relative to T2 of 
arterial blood and tissue. Therefore, spin-labeled signal in the 
venous pool can be made negligible (see discussion in [22]). 
Arterial blood signal contributions in the imaging voxel 
depend on spin labeling duration and blood transit time. If 
spin labeling duration is longer than the blood transit time 
from the labeling plane to arteries at the imaging slice ( a) 
but shorter than the transit time to capillaries ( c), then 
arterial blood signal dominates (Fig. 1). In humans, a and c 
in gray matter is ~0.9 s [25] and ~1.4-1.9 s [25, 26], 
respectively. Based on the central volume principle, arterial 
CBV can be determined from CBF and transit time of ( c - 

a) [26]. a and c can be measured without and with magnetic 
field gradients, respectively, since the ASL signal originating 
from arterial blood can be suppressed by employing small 
bipolar gradients. Although this bipolar gradient approach 
with multiple spin labeling times has been successfully 
implemented in humans [26], determining a and c 

accurately is not trivial. Thus, we propose a simple method 
to use one spin labeling time longer than c with and without 
the suppression of arterial blood signals [12]. When 
diffusion-weighted gradients are applied, ASL signal ( S), 
as a function of the diffusion-weighted gradient factor b, at 
echo time TE, is described as 
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where a is the fraction of spins in the arterial blood pool 
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*
 arises from arterial spins only 

[12]. With rectangular-shaped gradient pulses, b (in units of 
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where  is the gyromagnetic ratio of proton nuclei,  is the 

duration of each gradient, G is the diffusion-weighted 

gradient strength and  is the time between gradient onsets 

[9]. When bipolar gradients of b >70 s/mm
2
 are applied, then 

only tissue signal remains [12], while both arterial and tissue 

signals exist when no bipolar gradient is used. The difference 

between ASL signals with and without bipolar gradients is 

related to arterial blood volume. The fraction of arterial spins 

is   
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where S(0) and S(b) is the signal intensity of unlabeled 

images without and with bipolar gradients, respectively;  is 

the spin-labeling efficiency; 
)( ,2,2 tissueartery RRTE

e= , where 

R2,tissue and R2,artery are the 1/T2 values of tissue and arterial 

blood water, respectively. If T2 values of blood and tissue are 

similar (such as at 9.4 T [27]) or TE is short, then   1.0.  
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 Alternatively, arterial blood from tissue in ASL signal 
can be separated with independent modulation of tissue and 
vessel signals (MOTIVE) with different MT effects in tissue 
and blood [13]. When protons in tissue macromolecules are 
saturated by long off-resonance RF pulse(s), their 
magnetization is transferred to tissue water protons [28, 29], 
thereby selectively reducing the ASL signal originating from 
tissue water. However, the signal from the arterial blood 
pool is minimally affected due to its small macromolecular 
content and the inflow of fresh spins from outside the RF 
coil’s sensitive region [28, 29]. Thus, arterial blood and 
tissue signals can be differentiated with MT effects. The MR 
signal intensity from tissue decreases with an increase in MT 
level; but the MT effect on arterial blood signal is 
insignificant. Schematic diagram is shown in Fig. (2). The 
normalized ASL signal (the difference between the 
“unlabeled” signal and “labeled” signal), SMT/So can be 
written as  

)2()/(  /SS 00MT CvSSC
aMT

+         (3) 

 Where SMT and S0 is the signal intensity with and without 

MT effect, respectively; C is a constant related to tissue 

perfusion, which is 2 ( f / ) / (1 / T1 + f / )  where f is 

cerebral blood flow (ml/100 g tissue/min), and T1 is T1 of 

tissue without MT effects. By fitting a linear function to 

SMT/S0 vs. SMT/S0, the intercept represents MT-insensitive 

arterial blood signals. In our case, we assumed   1.0. If 

the arterial oxygen saturation level is much less than 1.0, 

CBVa is under-estimated by 1/ .  

 The example of isoflurane-anesthetized rat brain for 
CBVa measurement is shown in Fig. (3). The normalized 
ASL signals were calculated at each MT level (e.g., Figs. 3A 
and 3B), then were fitted against normalized unlabeled 
images at corresponding MT level (not shown here). CBVa 
maps (Fig. 3C) can be easily achievable by calculating with 
intercepts, slopes, and arterial spin labeling efficiency (see 
Eq. [3]). Similarly, ASL signals without bipolar gradient 
(Fig. 3A) were compared with those with bipolar gradients 
(Fig. 3E). Then, CBVa maps were calculated using Eq. [2] 
(Fig. 3F).  

Functional CBVa Measurements: MT-Varied BOLD 

 As mentioned previously, extravascular tissue and 
intravascular venous blood pools will be considered together 
as one MT-dependent compartment. In contrast, the arterial 
blood pool experiences only a minimal MT effect. In order 
to separate MT-dependent tissue and MT-independent 
arterial signals to BOLD fMRI, functional experiments can 
be performed with different MT levels [22]. Schematic 
diagram is same shown in Fig. (2) except ASL signal ( S) is 
replaced with stimulus-induced signal change ( S). The 
stimulus-induced signal change in the presence of MT 
( SMT) normalized by S0 is 

++=
aMTtissueaMT
vSSTERvSS )/()(/ 0,20

       (4) 

when 
0

/ SS
MT

is linearly fitted against normalized 

baseline signal 
0
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MT

, an intercept is va  and a slope is 

[22, 30]. When gradient-echo data collection is used instead 

of spin echo, R2 terms in Eqs. [1] to [4] should be replaced 

with R2*. It should be noted that BOLD fMRI with diffusion 

gradients can separate only extra- vs. intra-vascular (arterial 

+ venous blood) functional signals [31], thus can not be used 

to measure CBVa if the intravascular venous blood signal 

contributes to BOLD fMRI. 

BASELINE CBVa QUANTIFICATION 

 In order to determine quantitative CBVa map, continuous 
ASL techniques with either MT or bipolar gradient 
approaches were implemented in isoflurane-anesthetized rats 
at 9.4 T [12, 13]. All coronal images were acquired using a 
single-shot echo planar imaging (EPI) sequence with spin 
preparation time = 8 s, spin echo time (TE) = 36 ms, 
repetition time (TR) = 10 s, slice thickness = 2 mm, and in-
plane resolution = 0.47 0.47 mm

2
. To vary a level of MT 

effects without changing arterial spin labeling efficiency, we 
used two actively-detunable surface coils: one in the neck for 
generating arterial spin labeling in the carotid arteries, and 
the other in the brain for generating MT effects and 
collecting images. A pair of pulses, a 100-ms spin labeling 
pulse in the neck coil followed by a 100-ms MT-inducing 

 

Fig. (1). Schematic model of ASL. Labeled arterial blood water travels into the capillaries where it exchanges with extravascular tissue 

water. If this exchange is unrestricted, then the concentration of labeled water in capillaries, extravascular tissue, and venous blood is 

identical (ignoring T1 decay), leaving signal origins from only two compartments - arterial blood (dark gray) and capillaries + extravascular 

tissue + venous blood (light gray). Measurement of CBVa then involves the separation of these two compartments. Spin transit time from the 

labeling plane to artery and capillary within a pixel is a and c, respectively. 
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pulse in the head coil, was repeated during a spin preparation 
period (see pulse sequence in [13]). Two CBVa measurement 
approaches were compared: ASL with MT and bipolar 
gradients. MT pulses with +8,500 Hz off-resonance 
frequency were applied during the spin labeling period for 
achieving MT ratios (MTR = 1 – SMT/S0) of 0 - 0.6 without 
the use of bipolar gradients [13]. The average CBVa obtained 
from ASL with MT (without bipolar gradient) (Fig. 4A) was 
1.0 ± 0.3, 1.0 ± 0.3 and 1.7 ± 0.6 ml/100 g tissue (n = 10) in 
the cortex, caudate putamen and a region containing a large 
artery, respectively [13]. ASL images with bipolar gradients, 
b = 0 and 104 s/mm

2
 with each MT level were also obtained 

for CBVa mapping (Fig. 4B-D). The CBVa values measured 
by both methods agree well [12]. Cortical CBVa values in 
anesthetized rats were 0.6  1.4 ml/100 g (n = 12).  

 Since both the MT and diffusion-weighted methods can 
determine CBVa from ASL measurements, it is important to 
critically evaluate properties of both methods (see details in 
[12]). Although the arterial blood volume fraction is on the 
order of 1% of total brain volume, quantitative CBVa values 
were robustly measured because in ASL studies, the ratio of 
signal originating from arterial blood relative to tissue is 
much greater than the actual arterial blood volume fraction. 
In our studies, signals originating from arterial blood are 
typically 10 - 15% of ASL signal ( S0). In humans, the 
arterial blood signal contribution can be >50% of S0 when 
the spin labeling time < 2.0 s [8]. If the tissue signal is 
further suppressed by MT effects, the relative contribution of 
arterial signals is accentuated. Differences between the 
diffusion-weighted and MOTIVE approaches with ASL are: 
i) Only two measurement points (with and without 

 

Fig. (2). Schematic diagram for separating arterial blood components from ASL or BOLD responses with MT effects [30]. The x-axis 

is the baseline signal intensity with MT effects (SMT) normalized by the baseline signal intensity without MT (S0), where SMT/S0 is equivalent 

to 1-MTR (MT ratio). The y-axis is the ASL signal or functional BOLD signal change ( SMT) normalized by S0. Since signals from both 

tissue and veins are MT-sensitive and would be totally eliminated with sufficient power, both their baseline and responding signals decrease 

with increasing MT effects (decreasing SMT/S0), with an extrapolated intercept of zero. However, arterial blood is insensitive to MT effects 

due to the inflow of fresh blood; thus arterial signal is constant, irrespective to tissue MT effects. Fitting SMT/S0 as a function of SMT/S0 

therefore yields the MT-independent arterial signal contribution intercept. For ASL with MT effect, absolute baseline arterial CBV can be 

obtained, while arterial CBV change can be determined from BOLD with MT. 

 

Fig. (3). Two ASL approaches to obtain arterial CBV maps. Data were obtained from one isoflurane-anesthetized rat at 9.4 T. ASL 

signals were obtained with various MT effects (A with MTR = 0 and B with MTR = 0.5), then intercepts of SMT/S0 vs. SMT/S0 were 

determined on a pixel-by-pixel basis and converted to CBVa (C). Alternatively, ASL data were obtained without (b = 0 s/mm
2
) and with 

bipolar gradients (b = 104 s/mm
2
) (A and E) in absence of MT effects. Then, the CBVa map was calculated (F). Sensitivity in the ventral 

brain region is poor, due to its distance from the RF detection coil. Scale bar: 5 mm. Arterial CBV gray scale: 0 – 2 ml/100 g. GM: cortical 

gray matter; cc: corpus callosum (white matter). 
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suppression of arterial signals) are obtained in the diffusion-
weighted method, while more points at multiple levels of 
tissue signal intensity can be obtainable with MOTIVE. The 
large dynamic range afforded by multiple MT saturation 
levels in the MOTIVE method may potentially yield more 
accurate CBVa than obtained from a simpler two-point 
approach. ii) Implementation of the diffusion-weighted 
technique is simple both for continuous and pulsed ASL. The 
MOTIVE method with continuous ASL requires two coil 
system (two RF amplifiers) for modulation of MT levels 
without changing the arterial spin labeling efficiency. But, 
the MOTIVE approach could be implemented with pulsed 
ASL by applying variable MT-inducing RF pulses during the 
spin labeling period (e.g., inversion time in FAIR [5]). iii) 
MT-inducing RF pulses in the MOTIVE approach can cause 
significant power deposition, especially at high magnetic 
fields. Based on our experience in rat studies, the MOTIVE 
technique is more robust than the bipolar gradient method. 
However, since the MOTIVE approach with MT can not 
easily apply to human studies due to a concern of power 
deposition, the bipolar gradient CBVa approach is more 
appealing.  

 Similar diffusion-weighted ASL approaches were used to 
determine absolute CBVa in humans. Peterson et al. [11] and 
Brookes et al. [10] proposed to acquire labeling time-
dependent ASL images by repetitive data acquisitions after 
pulsed arterial spin labeling. Non-exchangeable and 
exchangeable ASL signals can be de-convoluted with 
dynamic perfusion models, thus CBVa can be quantified 
from the non-exchangeable ASL signals. To obtain multiple 
labeling time-dependent ASL signals quickly, Look-Locker 
acquisitions were implemented after pulsed ASL [10, 11]. 
Small flip angle excitations were repeated with an inter-pulse 
interval after one ASL pulse, consequently the signal 
intensity is closely dependent on excitation flip angle and 
time interval between data collection. Thus, flip angle and 

inter-pulse delay should be optimized. Petersen et al. 
measured CBVa in humans to be 0.9% for gray matter and 
0.3% for white matter [11]. Similarly, Brookes et al. found 
human CBVa of 1.7 – 2.2% (n = 6) in gray matter and 9 -10 
% in area with large arterial vessels [10]. The CBVa obtained 

with dynamic ASL model turned out to be zero when arterial 
blood signals were suppressed with the b-value of 4.4 mm

2
/s 

[10], indicating that the proposed dynamic ASL model with 
two compartments is valid. The multiple spin-labeling time 
approach [10, 11] is effective to simultaneously measure 
CBVa and CBF, and arterial and capillary transit times can 
be additionally determined. Disadvantages of this approach 
are to select the proper time-interval between repeated data 
acquisitions, to measure excitation flip angles accurately, 
and to use complex dynamic ASL models. If the time 
interval is too short relative to the arterial blood travel time 
( c - a) in the imaging slice, the blood signal is partially 
saturated during repeated RF pulsing. When CBF, c, and a 
are obtained from ASL data with multiple spin labeling 
times, CBVa can be also calculated using the central volume 
principle. Recently, Liu et al. found CBVa of human gray 
matter to be 1.18 ml/100 g [25]. These measured human 
CBVa values [10, 11, 25] agree with those reported by Ito et 
al. of 1.1 ± 0.4 % in humans [32], in which a dynamic blood 
and tissue compartment model was used in conjunction with 
11

CO and time-dependent H2
15

O PET studies. Compared to 
multiple spin labeling time studies, our bipolar gradient ASL 
approach with one spin labeling time is simple and has high 
sensitivity due to the use of 90° excitation pulse (rather than 
small flip angle pulses). However, the spin-labeling time 
should be selected longer than c, which may not be 
straightforward in abnormal vascular conditions.  

 Recently, inflow-based vascular-space-occupancy 
(iVASO) technique was proposed to measure CBVa [33]. 
This approach is similar to the ASL method with an inflow 
time of c. In this approach, two images are subtracted to 

 

Fig. (4). Consistency of CBVa maps obtained from ASL with MT and bipolar gradient [12]. Data were obtained with three MTR levels 

of 0, 0.23 and 0.53 with and without bipolar gradient from one isoflurane-anesthetized rat at 9.4 T. The CBVa map was calculated from three 

MTR ASL images without bipolar gradient (A), and from data with and without bipolar gradient at each MTR level (B-D). Clearly, all four 

CBVa maps are quite similar. Scale bar: 5 mm. Arterial CBV gray scale: 0 – 2 ml/100 g.  
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obtain only arterial blood signals; one image is acquired at a 
blood nulling inversion time after a non-slice selective 
inversion pulse followed by a slice-selective inversion pulse, 
so spins within the imaging slice are un-perturbed, while 
inflowing blood spins will be initially inverted. The other 
image is obtained at the same inversion time after a slice-
selective inversion pulse followed by a slice-selective 
inversion pulse, so both tissue and arterial blood spins are 
un-perturbed. Gray matter CBVa is reported to be 1.6 
ml/100 g in humans. Although this approach is similar to 
other ASL CBVa methods, only one inversion time is used 
without the use of bipolar gradients. Thus, this is the most 
simple among all currently available CBVa measurement 
methods. The major drawback of this approach is to 
carefully select an inversion time to null blood signals, while 
the inflowing blood during the inversion time fills up only 
arterial vasculature. This condition is not easy to be met.  

ARTERIAL VS. VENOUS CBV CHANGE DURING 
STIMULATION 

 Significant CBV changes induced by various neural 

stimuli have been observed using CBV-weighted fMRI and 

intrinsic optical imaging studies [34-36]. The separation of 

total CBV change into CBVa and CBVv changes is helpful 

for understanding basic vascular physiology and properly 

interpreting BOLD signals. We therefore investigated the 

relationship between CBVa and CBVt in isoflurane-

anesthetized rats during 15-s forepaw stimulation [37]. 

Although most fMRI studies have been performed with -

chloralose anesthesia, we instead chose to use isoflurane 

because it provides stability of anesthetic depth coupled with 

simple noninvasive induction; these benefits enable us to 

maintain consistent animal physiology during the long 

duration of these experiments [38, 39]. CBF and CBVa were 

simultaneously determined by the MOTIVE technique [13], 

while CBVt was determined by following intravascular 

infusion of a susceptibility-based contrast agent [40, 41]. The 

difference between CBVt and CBVa was considered to be 

CBVv. Baseline vs. stimulation values in the somatosensory 

cortical region (see Fig. 5) were: CBVa = 0.83 ± 0.21 vs. 

1.17 ± 0.30 ml/ 100 g, CBVt = 3.10 ± 0.55 vs. 

3.41 ± 0.61 ml/ 100 g, and CBVa/CBVt = 0.27 ± 0.05 vs. 

0.34 ± 0.06 (n = 7, mean ± SD) [37]. Absolute changes in 

CBVa (0.34 ± 0.16 ml/ 100 g) and CBVt (0.31 ± 0.11 ml/ 100 

g) due to activation are similar (see Fig. 5). In our 15-s 

somatosensory stimulation studies in rats, the blood volume 

changes during neural stimulation occur mainly in arteries 

rather than in veins [37]. Direct optical measurements of 

vessel diameters show the similar finding that arterial blood 

vessels dilate, while venous vessels do not change much 

during 20-s neural stimulation [42]. Arterial vs. venous CBV 

changes can be dependent on stimulus parameters such as 

strength, spatial extent, and duration [30]. If the stimulus 

duration is short, venous CBV change will be minimal due to 

its passive responsiveness. If the stimulation duration is long, 

then venous CBV contribution is larger [43]. Nonetheless, 

arterial CBV change is highly significant, and can be used 
for functional brain mapping.  

 The implication of our CBVa findings have been 

discussed previously [37]. The BOLD effect depends on 

alterations in venous oxygenation level (Y) and CBVv in 

response to increased neural activity [21]; an increase in 

venous oxygenation level increases BOLD signals, while an 

increase in venous blood volume decreases the BOLD effect. 

It should be noted that an increase in CBVa in itself does not 

contribute to BOLD signals significantly. Generally, the 

CBVv change has been estimated directly from total CBVt 

measurements or indirectly from CBF changes using 

Grubb’s equation [44-47] under the assumption that CBVv 

changes are dominant. Since our results show that venous 

blood volume changes are minimal during short stimulation, 

 

Fig. (5). Quantitative baseline hemodynamic maps and responses to somatosensory stimulation [37]. Images are shown from two out of 

seven animals. CBVa maps (grayscale images in top row) were acquired with MT-varied ASL, while CBVt maps (grayscale images in 

bottom row) were obtained with 15 mg Fe/kg contrast agent, where quantitative baseline values are shown in units of ml/100g. Functional 

activation maps for CBVa (color overlays in top row) and CBVt (color overlays in bottom row) are shown as cross-correlation values. 

Activation foci are all located in the forelimb somatosensory cortex. Quantitative comparisons of CBVa vs. CBVt (right plot) were made 

by taking the differences between baseline and stimulation conditions within a 9-pixel region (i.e., 1.4 1.4 2.0 mm
3
) centered over the 

anatomically-defined somatosensory cortex. The similarity of CBVt and CBVa (within measurement error), indicates that arterial CBV 

changes are dominant. The line of identity is shown. 
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BOLD fMRI signals will derive mostly from changes in 

venous oxygenation. Thus, the biophysical model for BOLD 
can be simplified as  

YCBVMR
v

=
*

2
,         (5) 

where R2
*
 is the stimulus-induced relaxation rate change, 

Y is the change in venous oxygenation level, which is 
caused by the mismatch between CBF and cerebral oxygen 
consumption (CMRO2) changes, and M is a constant closely 
related to many biological and MR parameters, including 
vessel size, magnetic field, and pulse sequence. To show the 
importance of functional CBVv contribution, relative 
CMRO2 changes were estimated from the human visual 
cortex data reported in Kim et al. [46], which are 

CBF/CBF and R2
*
 of 47% and -0.45 s

-1 
during 

hypercapnia, and 44% and -0.11 s
-1

 during visual 
stimulation, respectively. i) When it is assumed that the 
relative CBVv (rCBVv) change = the relative CBVt change 
obtained from CBF/CBF using the Grubb’s equation for 
both hypercapnia and visual stimulation, which has been 
widely used in the fMRI community, the relative CMRO2 

change is 17%. ii) If the rCBVv change = the relative CBVt 
change in hypercapnia, but rCBVv change = 0 for visual 
stimulation, then the relative CMRO2 change is 38%. iii) If 
the rCBVv change = 0 for both hypercapnia and neural 
stimulation, then the relative CMRO2 change is 30%. The 
ratio of relative CMRO2 to CBF change is 0.39, 0.86, and 

0.68, depending on the different rCBF vs. rCBVv conditions. 
When the commonly-accepted assumption of significant 
CBVv changes is used (case #1), Y will be overestimated as 
determined from the measured BOLD response, and 
consequently the CMRO2 change is underestimated 
significantly. Thus, the proper estimation of rCBVv change, 
which is indirectly determined from arterial and total CBV 
changes in our laboratory, is important to quantify relative 
CMRO2 change from BOLD signals.  

SPATIAL SPECIFICITY OF ARTERIAL CBV 
CHANGE 

 One of important questions is whether the functional 
CBVa response is specific to sites of neural activity. To 
evaluate spatial specificity of fMRI signals, the cat cortical 
layer model with full-field visual stimulation can be used 
[36]. If the fMRI signal is specific to neural activity, the 
highest change should occur within layer 4, which has the 
highest density of capillary mesh and synapses, and which 
has the highest changes in neural activity, metabolism, and 
blood flow during sensory stimulation [48]. Layer 4 is 
roughly located at the middle of the cortex (hyperintensity 
area in T1-weighted image indicated by black arrows in Fig. 
6D). Full-field visual stimulation activates the entire visual 
cortex, so blood containing stimulus-induced 
deoxyhemoglobin changes travels far downstream to large 
draining veins, thus it is ideal to examine spatial specificity 

 

Fig. (6). Gradient-echo BOLD vs. arterial CBV-based fMRI responses to visual stimulation in isoflurane-anesthetized cats at 9.4 T [30]. 

Images and functional maps illustrate results from one of seven animals. A: gradient-echo BOLD fMRI with TE = 20 ms (without MT). To 

determine arterial CBV changes, only pixels which are active in BOLD fMRI were selected. Then, intercepts were calculated from gradient-

echo BOLD data acquired at 3 different MT levels. B & C: intercept maps. Since negative intercepts (purple) are likely due to a reduction of 

the MT-insensitive CSF volume, only positive intercepts (red/yellow) were converted to CBVa values for quantification, shown in C. 

Clearly, the highest CBVa change is located at the middle of the cortex indicated by white arrows. D: T1-weighted anatomic image showing 

gray and white matter contrast. The visual cortex indicated by green contours has a myelin-rich hyperintense band at the middle of the cortex 

(white arrows), indicating layer 4. E: average cortical depth profiles of GE BOLD fMRI (without MT) and CBVa obtained from 

quadrangular ROIs in area 18 (illustrated by red outlines in D). Approximate cortical layer locations were determined by the relative 

distances of those layers in area 18 [48]. Error bars: SEM (n = 7). 
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of fMRI signals. Note that the rat forepaw stimulation model 
used in Fig. (5) is not ideal for investigating spatial 
specificity due to small activation area and consequently 
minimal draining problem. To obtain both BOLD and CBVa 

changes, MT-varied BOLD fMRI [22] was used on a well-
developed cat visual cortical model due to its higher 
sensitivity and temporal resolution over ASL approaches. 
BOLD fMRI with three MT levels was acquired across 
cortical layers of isoflurane-anesthetized cats during visual 
stimulation with a single-shot gradient-echo (GE) EPI 
technique with slice thickness = 2 mm, in-plane resolution = 
0.31 0.31 mm

2
, TE = 20 ms, and TR = 1 s. In conventional 

GE-BOLD fMRI (i.e. without MT effect), the highest 
percentage signal changes occur above the surface of the 
cortex (green contour area in Fig. 6A), within the 
subarachnoid space containing cerebrospinal fluid (CSF) and 
numerous large vessels (including pial veins). Stimulus-
induced changes normalized by S0 ( SMT/S0) were linearly 
fitted against corresponding normalized baseline signals 
(SMT/S0) (refer to Fig. 2 schematic). When intercepts were 
computed from BOLD data acquired at three different MT 
levels, positive values were observed within the cortex, 
while negative values were detected mostly from the cortical 
surface (Fig. 6B). Since arterial vessels dilate during 
stimulation, only positive intercept values are shown in the 

CBVa map of (Fig. 6C). Within the cortex (within the green 
contours), the highest change was observed at the middle of 
the cortex (indicated by white arrows in Fig. 6C), where 
average CBVa and BOLD responses without MT effects (n 
= 7) were 0.33 ± 0.02 ml/ 100g and 1.16 ± 0.44%, 
respectively [30]. Negative changes observed in the surface 
of the cortex (purple pixels in Fig. 6B) are likely due to a 
decrease in MT-insensitive CSF volume [30], which was 
experimentally proven using T1rho-based fMRI [49]. This 
clearly demonstrates that arterial CBV fMRI will improve 
spatial specificity to sites of neural activity relative to BOLD 
fMRI. 

 Since CBVa response is more specific to neural activity 
relative to BOLD fMRI, it can be used for high-resolution 
fMRI. Functional CBV measurements with endogenous 
contrasts have been shown by i) arterial spin labeling with 
varied MT effect (i.e., MOTIVE) [37] and Look-Locker EPI 
[10], ii) vascular space occupancy (VASO) [50], and iii) 
apparent diffusion coefficient (ADC) [51]. ASL with LL EPI 
was used in humans for fMRI studies; baseline CBVa in the 
motor cortex was 3.7% and increased to 4.9% during finger 
tapping [10], and baseline CBVa in the visual cortex was 
0.88 ml/100 g and increased to 1.44 ml/100 g during visual 
stimulation [52]. Functional CBVa maps appear to be more 
localized than BOLD fMRI [10]. The VASO technique has 
been used to determine temporal dynamics of functional 
CBV change, but its sensitivity is quite poor, especially at 
high magnetic fields. Since T1 values of blood and tissue 
converge at high fields, the suppression of blood signals with 
the non-selective inversion recovery technique results in low 
tissue signals. To overcome this issue, inflow-enhanced slab-
selective VASO approach was proposed [53], which can also 
improve spatial resolution [53]. However, the VASO 
technique is difficult to the quantification of absolute or 
relative CBV changes, and also sensitive to CSF 
contributions. Functional ADC changes with small b-values 
are heavily weighted by CBVa if venous blood signals are 

suppressed [31]. The venous blood signal can be suppressed 
at setting TE >> T2*, which can be achieved at high fields. In 
fact, this bipolar gradient BOLD approach has been 
extensively used to separate intra- and extra-vascular 
functional signals [27, 54].  

 Based on our animal studies at 9.4 T, we found that MT-
varied BOLD provides the highest sensitivity and temporal 
resolution among available techniques in our laboratory, 
ASL with MT (MOTIVE), VASO, and ADC. The MT-
varied BOLD technique provides simplicity, high temporal 
resolution and high sensitivity for the quantification of 

CBVa, thus is the choice of non-invasive CBV-weighted 
fMRI methods in animal studies with a surface coil. 
Drawbacks of the MT-varied BOLD technique are many 
folds. i) Additional MT-inducing pulse is required, 
consequently concerning SAR at high magnetic fields. ii) 
Since inflow spins should not experience MT-inducing 
pulses, the surface coil is preferable. When a homogeneous 
coil is used, then inflowing arterial blood also have up to 
40% of tissue MT effects [55]. iii) In MT BOLD fMRI, the 
venous CBV contribution is assumed to be minimal. If MT 
effect in tissue and venous blood is similar due to free water 
exchange, then both venous blood and tissue signals are MT-
dependent, while the arterial signal is MT-independent. This 
assumption is valid when MT pulses are long enough (  
water exchange time). Otherwise, the venous blood signal is 
suppressed by setting TE >> T2* of venous blood, which can 
be achievable at high fields. iv) MT BOLD fMRI requires 
two fMRI runs with or without MT effect. Due to head 
motions between fMRI runs, MT-varied BOLD fMRI is not 
easy to be implemented for human fMRI studies. 

CONCLUSIONS 

 Quantitative CBVa and its functional changes can be 
determined non-invasively with MRI. The CBVa response 
shows dominant to total CBV change during neural 
activation and well-localized to neural activity, and also 
provides the quantification of functional activity. Therefore, 
the CBVa MRI techniques may be valuable tools for routine 
determination of vessel viability and function, as well as the 
identification of vascular dysfunction.  
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