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Abstract: The vervet monkey is an important nonhuman primate model that allows the study of isolated environmental
factors in a controlled environment. Analysis of monkey MRI often suffers from lower quality images compared with
human MRI because clinical equipment is typically used to image the smaller monkey brain and higher spatial resolution
is required. This, together with the anatomical differences of the monkey brains, complicates the use of neuroimage analy-
sis pipelines tuned for human MRI analysis. In this paper we developed an open source image analysis framework based
on the tools available within the 3D Slicer software to support a biological study that investigates the effect of chronic
ethanol exposure on brain morphometry in a longitudinally followed population of male vervets. We first developed a
computerized atlas of vervet monkey brain MRI, which was used to encode the typical appearance of the individual brain
structures in MRI and their spatial distribution. The atlas was then used as a spatial prior during automatic segmentation to
process two longitudinal scans per subject. Our evaluation confirms the consistency and reliability of the automatic seg-
mentation. The comparison of atlas construction strategies reveals that the use of a population-specific atlas leads to im-
proved accuracy of the segmentation for subcortical brain structures. The contribution of this work is twofold. First, we
describe an image processing workflow specifically tuned towards the analysis of vervet MRI that consists solely of the
open source software tools. Second, we develop a digital atlas of vervet monkey brain MRIs to enable similar studies that

rely on the vervet model.
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1. INTRODUCTION

Nonhuman primate (NHP) models are essential in under-
standing brain function and disease. The macaque and Afri-
can green (vervet) monkeys are common NHP models in
translational research. Monkeys are close to humans physio-
logically and behaviorally, justifying their use in studies that
cannot be done on humans. Additionally, control of their
experimental history and environment avoids many of the
variables that confound clinical studies. The vervet monkey
is one of the most important NHP models, which is becom-
ing increasingly used [1-5]. Compared to rhesus macaques,
vervets are abundant, less expensive, and are easy to handle
[6]. Nonhuman primates [7], including the vervet monkey
[8-10], have been increasingly used to provide a unique ani-
mal model for studying the effects of alcohol abuse. The
vervet monkey (Chlorocebus aethiops) is anecdotally
thought to consume ethanol in nature and as such,
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provides a relevant model of the neurobiological conse-
quences of long-term ethanol exposure. Our work is moti-
vated by a biological study focused on the effects of long-
term heavy ethanol (EtOH) consumption on the vervet brain
structure using in vivo Magnetic Resonance Imaging (MRI)
[11]. In order to quantify these effects, we are interested in
measuring the morphological changes of the individual brain
structures over time.

In the context of the biological study, we have been fol-
lowing a population of 10 vervets, which include normal
controls that consume a maltose-dextrin solution that is iso-
caloric to ethanol and those subjects that are induced to con-
sume ethanol, as previously described by Vivian et al. [12].
The subjects are imaged prior to ethanol or maltose-dextrin
induction (baseline imaging), and at a post-induction interval
(follow-up imaging). The ultimate objective of our image
analysis is to provide accurate volumetric measurements of
certain anatomical structures thought to be impacted by
chronic alcohol ingestion. Morphological analysis has been
used extensively for human brain MRI [13,14]. However, the
existing tools are fine-tuned to human brain MRIs, which are
quite different from monkey brain MRIs. Compared to hu-
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Fig. (1). Representative example of the inhomogeneity artifact observed in vervet MRI. Left: T1-weighted (T1w) vervet MRI, voxel resolu-
tion 0.5x0.5x0.5 mm. Right: T1w MRI of human head obtained using standard clinical sequence, voxel resolution 1x1x1.3 mm.

man brain MRIs, scans of the monkey brain are acquired
with higher spatial resolution to capture anatomical detail of
the smaller brain. This often results in a poorer signal-to-
noise ratio (SNR), as compared to human MRIs. The imag-
ing coils used for NHP MRIs are typically not developed
specifically for NHP imaging (as an example, human knee
coils are sometime used to image the NHP brain [15]) or are
not as advanced as those used for humans. This contributes
to considerable signal inhomogeneity and can reduce SNR
(see Fig. 1). Most importantly, there are notable anatomical
differences between the monkey and human brain. Specifi-
cally, the olfactory cortex of the NHP is more prominent at
rostral levels than in the human brain, NHP have smaller size
of the cerebral cortex that has different gyration patterns, and
the relative size of the subcortical structures is different be-
tween the human and NHP brains [16]. A central issue in
adapting the existing tools to the task of processing NHP
MRI is the generation of computerized atlases of the brain
anatomy [17], which are used to guide automated segmenta-
tion tools. These atlases encode different characteristics of
the brain anatomy for the studied population, such as the MR
signal intensity, shape and the relative location of the indi-
vidual brain structures with respect to each other [17,18].
This information is especially critical for automatic segmen-
tation of the anatomical structures with similar MR intensity
signal profiles. While atlases for some NHP species have
been developed previously [15,19-24], no such atlas was
available for the vervet at the time of our study. In this paper
we develop such an atlas, and integrate it into an automatic
atlas-guided segmentation tool, EM Segmenter [25] available
within 3D Slicer [26,27].

Constructing computerized MRI atlases often requires
segmentation of a representative set of scans (atlas popula-
tion), and aligning them to some reference. The spatial dis-
tribution of tissue classes is then computed by calculating the
frequency of occurrence for each tissue class in the spatially
aligned segmentations. Manually segmenting the MRIs of
our vervet population was particularly difficult due to the
low signal to noise ratio and strong bias artifacts. These arti-
facts cause manual segmentation of individual scans to be
time-consuming, and to have a high inter- and intra-rater
variability. We address this issue by following an alternative
strategy originally suggested by Styner et al. [19,28]. We
constructed an average segmentation template image by spa-
tially aligning the baseline scans of the atlas population to a

common reference and averaging them. The resulting aver-
age image has reduced noise, which simplifies and increases
the reproducibility of manual segmentation, making it more
practical. The transformations that align the individual scans
with the reference image are used to back-propagate the
manual segmentation to each of the subjects in the atlas
population. The probabilistic atlas is constructed by comput-
ing frequencies of occurrence for the individual tissues in
these back-propagated segmentations. We use two different
strategies to align the individual images. The first method
uses a fixed reference subject, while the second approach
uses an unbiased strategy [29-31], where the template is it-
eratively updated so that each subject in the atlas population
contributes equally to the atlas.

In order to evaluate our segmentation workflow, we ap-
ply it to the baseline images, and to the scans acquired dur-
ing the first follow-up imaging session. Our focus is on the
development and evaluation of the segmentation technology,
therefore in this paper we do not attempt to quantify the
structural changes caused by the exposure of subjects to al-
cohol. However, since the follow-up images were not used
for atlas construction, they enable us to evaluate the robust-
ness of the workflow while processing images that have dif-
ferent properties, and that reflect longitudinal changes in the
subject anatomy.

In summary, we present a pipeline consisting of open
source tools available within 3D Slicer, which were carefully
tuned towards segmenting vervet brain MRIs. We evaluate
this pipeline on two sets of MRIs for our vervet population,
and study the impact of different atlas construction methods
on the segmentation result. Finally, we have published online
the digital atlas of the vervet monkey brain [32] and provide
in this article a detailed description of the pipeline itself.
This hopefully will reduce the technical barriers in automati-
cally segmenting vervet brain MRIs.

2. MATERIALS AND METHODS

Our study uses two sets of MRIs, which were acquired
before and after induction of the animals to self-
administration of EtOH or an isocaloric maltose-dextrin so-
lution, as described in Section 2.1. Section 2.2 presents our
approach to automatic segmentation of the vervet brain.
First, we preprocess the raw baseline and follow-up MR im-
ages to improve the reliability of the subsequent analysis.
The preprocessed baseline scans are used for the construc-
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tion of population-specific digital atlas capturing the typical
appearance of the normal vervet brain in MRIs. The details
of integrating this atlas into an automatic segmentation tool
within 3D Slicer are discussed in Section 2.2. Finally, we
describe our evaluation methodology and the statistical
methods in Section 2.3.

2.1. Image Data

Ten male vervet monkeys (Chlorocebus aethiops) were
obtained from the Wake Forest University Primate Center
(Winston-Salem, NC) and singly housed in cages equipped
with operant panels through which all food and fluids were
provided. Baseline imaging was performed when all animals
were approximately 4 years old. All animals were trained to
operate drinking panels in an identical fashion in an ongoing
ethanol self-administration study funded by National Insti-
tute on Alcohol Abuse and Alcoholism (NIAAA) to Dr.
David Friedman. The animals were trained to self-administer
either EtOH, or an isocaloric maltose-dextrin (control) solu-
tion through the panel. All procedures in this study were
conducted in compliance with State and Federal laws, stan-
dards of the US Department of Health and Human Services,
and guidelines established by the Wake Forest University
Institutional Animal Care and Use Committee as well as the
National Institute of Health Guide for the Care and Use of
Laboratory Animals (NIH Publications No. 80-23).

The imaging data was collected under conditions of gen-
eral anesthesia. Briefly, all animals were initially sedated
with ketamine and transported to the MRI Center where they
were placed on the scanner bed. They inhaled isoflurane
(3%) through a nose-cone at which time they were then intu-
bated and the concentration of isoflurane was reduced to
1.5% for the remainder of the scans. The animals were artifi-
cially ventilated to maintain the same physiological range of
vital signs across all animals. Vital signs including oxygena-
tion saturation, heart rate, respiration rate, expired CO, and
isoflurane concentration were monitored every 10-15 min-
utes using a pulseoximeter and an anesthesia monitor for the
duration of the scans. At the end of the scan session, the
isoflurane flow and ventilator were shut off and the animals
were allowed to breathe a mixture of oxygen and room air
until they began to recover from the anesthesia. Once they
exhibited various signs of recovery such as tongue and eye
movements and gag reflex, they were extubated and pro-
vided pipeline oxygen until they recovered enough to sit in
an upright position. They were then placed back into an ani-
mal carrier and returned to their home cages where they were
further monitored until they were fully alert.

Axial T1-weighted MR images were acquired on a 3T
GE scanner with a circularly-polarized, single channel dedi-
cated RF coil with an internal diameter of 18.4 cm (Litzcage,
Doty Scientific, Columbia, SC), using a 3D SPGR sequence
(TI 600ms, TE 3.276ms, TR 15.28ms; flip angle 15°; matrix
256x256; FOV 12cm; in-plane resolution 0.47mm; slice
thickness 0.5mm). The raw images were reconstructed into
3D volumes before processing. Two sets of scans were col-
lected. The baseline scan was acquired at the age of 4 years.
The follow-up acquisition was done approximately 8 months
later. During the first 4 months between the baseline and
follow-up acquisition the monkeys were trained to operate
the drinking panel, followed by the 4 month induction period
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[33]. Only half of the studied vervet population was exposed
to ethanol and underwent the EtOH induction procedure. The
other half was the control group that operated the drinking
panel in an identical fashion as the EtOH group but con-
sumed an isocaloric maltose-dextrin solution.

2.2. Image Segmentation Pipeline

Our image processing is based on the software compo-
nents implemented in 3D Slicer [27] and ANTS [34]. 3D Sli-
cer is a free open source software for medical image comput-
ing and visualization. The image processing needs within
this project included visualization and annotation of the im-
ages, ability to process DICOM data (needed for the conver-
sion of the raw data obtained from the scanner), interface for
manual image segmentation (preparation of the manually
segmented template image), linear and deformable image
registration capabilities that could be customized to our data,
automatic segmentation of the brain MRIs, and the ability to
develop new image processing components that can be inte-
grated within the framework. 3D Slicer provides all of the
needed functionality within the unified application interface.

Our segmentation pipeline consists of the three main
components: preprocessing, atlas formation, and segmenta-
tion. During preprocessing we perform spatial alignment of
the images, skull stripping, and correction for intensity in-
homogeneity. Next we prepare a population-specific atlas of
vervet brain MRI constructed from the baseline scans. As
part of atlas construction, we compute the spatial priors for
selected brain regions, which will guide the segmentation
process. We consider two approaches to atlas construction.
In the first case, the biased template is prepared by spatially
registering all of the images in the baseline population to one
of the subjects. In the second case, the template is derived by
iterative registration of the baseline scans to their pixelwise
average, resulting in an unbiased atlas template of our popu-
lation. We then register this template to each of the baseline
and follow-up scans, and apply the resulting transformation
to align the probabilistic atlases. The transformed atlases
serve as a spatial prior in the final step to guide the EM Seg-
menter, which we specifically parametrized to NHP MRIs.

2.2.1. Image Preprocessing

Our preprocessing of the raw MR images included skull-
stripping, correction of the bias field inhomogeneity artifact
and correction for the head pose, as summarized in Fig. (2).
Despite the continuous advancements in the development of
skull-stripping methodology [35-37], there are few robust
tools that are widely available. The available skull-strippers,
e.g., those available in FSL and SPM [13,14], are fine-tuned
for processing human brain anatomy, and the results are
highly dependent on the anatomical features of a subject
[28]. Several existing studies applied BET, the skull-
stripping tool distributed as part of FSL, to brain MRIs of
NHP [15,22,24]. However, due to the differences in the head
anatomy in human and NHP, this requires careful re-
parameterization of BET. In a recent study, BET was applied
to the challenging task of skull-stripping in the MRI of ba-
boon fetus [24]. The authors note that even after careful
parameterization, “manual editing is often necessary to in-
sure anatomically correct brain extraction”. Our preliminary
evaluation of applying BET to vervet brain MRI resulted in a
similar conclusion, which motivated us to develop a custom-
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Fig. (2). The preprocessing step consists of brain volume extraction, bias correction and recovery of the consistent pose for all subjects. Step
1 is done manually, steps 2 and 3 are performed automatically, steps 4 and 5 may require some manual interaction (see Section 2.2.1). All of

the pre-processing steps are performed using 3D Slicer.

Table 1. Contrast to Noise Ratio (CNR) Between white Matter and Gray Matter in the Tlw MRI Scans of the Studied Vervet
Population. The CNR is Improved for Most of the Subjects in the Follow-Up Acquisition, and that there is Noticeable
Variability in CNR Between the Individual Subjects

GM/WM Contrast-to-Noise Ratio
Subject ID 1 2 3 4 5 6 7 8 9 10 mean (STD)
Baseline scan 9.81 13.42 16.89 9.52 5.24 13.81 9.63 7.23 10.94 8.66 10.51 (3.41)
Follow-up scan 13.73 15.06 14.61 14.87 13.6 11.72 13.5 9.08 14.07| 1718 13.74 (2.15)

ized template-based approach to skull-stripping using the
tools available within 3D Slicer, as shown in Fig. (2).

A representative vervet brain MRI (ICC registration
template) was manually skull-stripped (Step 1 of the pre-
processing workflow, see Fig. 2), and then non-rigidly regis-
tered to each of the remaining MRIs. The obtained transfor-
mation was applied to the ICC mask in the template, provid-
ing a good initial approximation of the ICC in the individual
subject, which was then manually edited if necessary. A
critical component of this approach is inter-subject non-rigid
registration. While the appearance of the vervet brain is not
significantly different across subjects, this is not the case for
the extra-cranial structures and tissues. The thickness of the
temporalis muscle equals or exceeds the width of the brain at
more rostral locations, and is approximately the same as the
brain width at more caudal locations. Appearance and shape
of the soft extra-cranial tissues (specifically, the temporalis
muscle, neck muscles, ears and the jaw) are usually not con-
sistent between the image acquisitions. Perhaps more impor-

tant are the differences in the location of the field of view
relative to the subject head, which lead to variable portions
of the neck being present in the image. The vervet brain oc-
cupies a relatively small portion of the image volume (~5%
of the image voxels), therefore in the naive registration be-
tween the two vervet MRIs (using all of the image voxels),
those voxels that correspond to the brain contribute little
weight to the overall value of the similarity metric.

In order to achieve robust registration between the ICC
template and the reference MRI (the subject being skull-
stripped), the following customizations of registration
proved useful. We automatically segment the head region in
the reference image using BRAINSROIAuto tool of 3D Slicer
(Step 2 in Fig. 2). The N4ITK algorithm [38] is applied to
both the ICC template and the reference MRI to compensate
for the acquisition-specific spatial differences in the signal
intensity in the brain region (Step 3). The head region mask
is used by N4ITK to improve the robustness of the inho-
mogeneity correction. The bias-corrected images are next
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automatically registered using the BRAINSFit module [39] of
3D Slicer (Step 4). The registration strategy implemented in
BRAINSFit searches for a transformation that minimizes the
negated Mutual Information image similarity measure [40]
using a gradient descent optimizer. The registration process
is parameterized by the ICC mask in the template image, and
the head mask in the reference image: the calculation of the
similarity metric is restricted to the overlap of the regions
defined by these two masks. The complexity of the deforma-
tion model is gradually increased from rigid, to affine, to B-
spline transformations. In some cases initial rigid aligment of
the template to the reference image was necessary due to the
large discrepancy in the relative head location or orientation.
This was accomplished using the interactive registration
tools available in 3D Slicer. Following the registration of the
template to the reference image, the ICC template mask was
resampled using the final transformation. The result was
examined visually, and minor manual corrections were per-
formed using the Editor module of 3D Slicer to insure accu-
rate skull-stripping (Step 4). In the last pre-processing step
(Step 5) we positioned all images into consistent orientation.
The ICC template image was manually oriented so that the
AC-PC line was orthogonal to the coronal plane, and the
midline plane was aligned with the sagittal plane. Three
landmarks corresponding to the AC, PC and a point on the
midline were manually identified in each of the images. A
closed-form solution [41] for rigid transformation that aligns
these three landmarks in each of the subjects with landmarks
in the ICC template was automatically calculated using 3D
Slicer. Finally, we rescaled the intensities in each of the
skull-stripped images to have the same range.

As the result of this preprocessing, we obtained skull-
stripped, Dbias-corrected and consistently oriented scans
across baseline (pre-induction) and follow-up (post-
induction) MRIs of the vervet population.

2.2.2. Atlas Construction

We use the pre-processed scans to capture the typical
anatomy of the vervet brain in a population-specific digital
atlas. This atlas provides the prior information about the lo-
cation of individual brain structures to the EM segmentation
algorithm of Pohl et al. [25]. The atlas consists of two com-
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ponents. A probabilistic atlas defines the probability of oc-
currence of a given tissue for each voxel of the image. It is
defined in the space of the average anatomy of the studied
population, represented by an average intensity atlas (often
referred to as atlas template) that stores the typical signal
produced by a given tissue during MRI acquisition. In our
workflow, the atlas is constructed from the single manually
segmented template. We use the non-rigid transformations
between scans in the atlas population and this template to
estimate normal variability of the brain, as we discus below.
In addition to the two population-specific atlases, we use the
rhesus atlas developed by Styner et al. [19] for comparison.
Since the vervet is similar anatomically to the rhesus mon-
key, it is a reasonable candidate atlas for segmenting vervet
brain MRIs. We show representative slices from the three
atlases used in this study in Fig. (3), and axial slices at dif-
ferent locations for the unbiased population-specific atlas in
Fig. (4). Our atlas population is restricted to scans obtained
before the induction procedure. This ensures that we do not
encode atypical appearance of the vervet brain that may be
caused by exposure to alcohol.

Usually, atlas construction requires several manually
segmented images to derive the statistics of spatial distribu-
tion of tissues [25]. Manual segmentation is a tedious and
error-prone task. Based on our experience, manual segmenta-
tion of a single structure in one image requires on average 30
minutes of operator time, and is complicated by inconsistent
image quiality and noise. Significant differences were ob-
served in the contrast-to-noise ratio between different sub-
jects and between the different imaging sessions due to the
continuous improvements of the imaging protocols through-
out the study, as shown in Table 1. An alternative approach,
which does not require all of the atlas population scans to be
segmented, was suggested by Styner et al. [19]. Using this
approach, segmentation is prepared manually or semi-
automatically for a single scan. The result is back-propagated
onto each subject in the atlas population using non-rigid reg-
istration. These back-propagated segmentations are used to
construct the probabilistic atlas in the same fashion as in the
conventional atlas construction approaches. Next we de-
scribe this atlas construction procedure in more detail.

Fig. (3). Coronal slice of the average intensity template at the posterior commisure. Left to right: biased, unbiased and rhesus
atlas. The brain anatomies of the two monkey species are similar, but there are notable differences in the cortical patterns. Un-
biased atlas template has improved sharpness compared to the biased template. This can be explained by the smaller deforma-
tion required to align individual scans with the unbiased template, and by the different transformation model used in the regis-
tration process. The rhesus atlas demonstrates improved contrast and lower noise, as it is based on a larger population (18 ver-

sus 10 scans used to create our vervet atlases).
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Fig. (4). Average template for unbiased vervet atlas and the probability maps for gray and white matter. In this figure, gray matter prior in-
cludes the subcortical structures, white matter prior includes the brainstem and cerebellum.

The baseline scan that was least affected by the imaging
artifacts and had high signal to noise ratio was selected as
segmentation template. This was done to facilitate manual
segmentation of this scan. The remaining scans of the base-
line population were registered to this reference volume us-
ing BRAINSFit, as described in the previous section. The
transformation recovered by the registration for each subject
consisted of the two components: an affine and a B-spline
transformation. The affine component of the transformation
encodes the global differences between the template and
each of the subjects (e.g., due to the difference in pose and
total brain volume), while the non-rigid component repre-
sents the subject-specific differences in individual brain
structures (e.g., differences in the cortex gyration). The aver-
age template was computed by voxel-wise averaging of the
spatially aligned T1w MRI images. The template segmenta-
tion was initialized using k-means clustering available in
Insight Toolkit [42] into three classes corresponding to cere-
brospinal fluid (CSF), grey matter (GM) and white matter
(WM). This initial segmentation was examined by a trained
operator and manually corrected as necessary using the im-
age editing capabilities of 3D Slicer. The subcortical struc-
tures of interest (putamen (PUT), caudate (CAU) and hippo-
campus (HPC)) were traced manually in one hemisphere.
Segmentations of subcortical structures in the other hemi-
sphere were obtained by mirroring across the midsaggital
plane and adjusting the result manually.

Next, we computed the inverse of the B-spline non-rigid
component of the transformation for each of the subjects,
which were previously registered to a single subject in the
population, using the iterative inverse deformation field es-
timation method implemented in Insight Toolkit [42]. The
resulting transformation was used to back-propagate seg-
mentation of the average template to each of the subjects in
the atlas population. Voxel-wise probability maps for each of
these tissues were obtained by counting their frequencies of
occurrence in the back-propagated segmentations. This ap-
proach aligns all of the scans in the atlas population to the
single subject. The resulting atlas is biased towards the anat-
omy of the selected reference scan: the average atlas tem-

plate will be more similar to the reference subject compared
to other subjects in the population. To address this issue we
also generated an atlas using the unbiased template generator
developed by Avants and Gee [31] (available in the open
source ANTS library [34]). This approach iterates between
the computation of the linear average of the scans in the
baseline population, and diffeomorphic registration of each
of the scans to this average. We applied this method to the
set of baseline scans, and obtained an unbiased average tem-
plate, a deformation field that maps each of the scans in the
atlas population to this average, and an inverse of this de-
formation field. The probabilistic atlas was constructed using
back-propagation as described earlier. First, we warped the
manual segmentation prepared for the biased template to the
unbiased template. Next we applied the inverse transforma-
tions produced by the unbiased atlas estimation to back-
propagate the segmentation from the unbiased template to
each of the scans in the atlas population. The probabilistic
atlas was computed by calculating the frequencies of occur-
rence for each of the segmentation labels.

As the final step of atlas processing, we non-rigidly reg-
istered the average atlas template to each of the baseline and
follow-up scans. The transformation recovered by the regis-
tration was applied to warp the corresponding probabilistic
atlases for each of the tissue classes to the anatomy of the
subject. These aligned probabilistic atlases were used in the
next step of the processing pipeline to guide automatic seg-
mentation.

2.2.3. Configuration of the Segmentation Algorithm

The final step of our processing pipeline is automatic
segmentation of the images. We use the EM segmentation
approach by Pohl et al. [25] as it enables relatively easy ad-
aptation for our task. This approach is parameterized using a
rooted tree data structure. Using graph theory terminology,
tree is defined as a connected graph without cycles. The
graph edges in the rooted tree used by EM Segmenter are
directed away from the root node that describes the region
being segmented (e.g., the brain). Tree leaves (the nodes that
do not have outgoing edges) are located at the bottom of the
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hiearchy. Intermediate tree nodes in between the root and
leaf nodes correspond to the logical groups of the anatomical
structures (e.g., left subcortical gray matter), while the leaves
represent the individual segmented structures (e.g., hippo-
campus). In addition to encoding the parent-child relation-
ships between the segmented structures, the tree stores priors
for each individual tissue class. For example, segmentation
of the hippocampus proceeds by separating the brain volume
into gray matter, white matter and cerebrospinal fluid
classes, segmenting the subcortical structures from the total
gray matter volume, and finally segmenting the hippocampus
from the subcortical gray matter class. Such organization of
the segmentation process improves the robustness and sim-
plifies parameterization. The configuration of the segmenta-
tion hierarchy tree was customized for the purposes of seg-
menting the population of vervet MRI scans using the hier-
archy shown in Fig. (5). The tree was populated with the
subject-specific information: a spatial prior, which was pre-
pared in the previous step, and an intensity model. The ap-
proximate intensity model (mean and variance of the inten-
sity distribution for the given tissue class) was estimated
automatically by sampling the intensities for each structure
in the areas where it is likely to be located (95% probability,
as defined by the spatial prior).

In addition to the spatial prior and intensity model, seg-
mentation of each tissue class was guided by the confidence
parameter A in the range zero to one. At each leaf of the tree
the confidence specifies whether the classification decision
should rely more on the spatial prior (A=1), or on the inten-
sity model (A=0). The idea behind the specific organization
of the hierarchical tree (see Fig. 5) was to use similar values
of the confidence parameter for each structure at a given
hierarchy level, thus simplifying parameterization of the al-
gorithm. On levels 2, 3, 5 and 6 we set A value close to 1
(intensities are very similar for brainstem and white matter,
thus we need to rely on the spatial prior). Segmentation of
white/gray matter and CSF boundaries relied more on the
intensity distribution model, thus we set A=0 at this level.
The specific values of parameters were derived by experi-
mentation on a single image from the baseline population,
and then used without any additional tuning to segment the
rest of the images. We implemented the described configura-
tion of the segmentation algorithm in a customized NHP
segmentation task of the EM Segmenter module of 3D Slicer
[43].

ICC
WGC
IMAGE GM
BG = —
BS CSE
Level 1 2 3 4

Fedorovet al.

2.3. Evaluation Methodology

In our evaluation we studied the agreement between the
automatic segmentations and the human raters, and the effect
of the atlas choice on this agreement. The purpose of the
evaluation of the workflow on the follow-up MRIs was to
confirm that it can be applied to the scans not used during
the atlas construction.

The quantitative comparison used three rectangular re-
gions (further referred as R1, R2 and R3) defined in the cor-
onal plane, manually segmented in each image by two
trained research assistants using 3D Slicer, see Fig. (6). The
regions include sections of each of the subcortical structures
that were of interest for the biological study (caudate, hippo-
campus and putamen). R1 was in the frontal part of the brain
just anterior to the lateral ventricles. The bottom left corner
of R2 was at the anterior commissure, capturing a cross-
section of the putamen and caudate nucleus. R3 was located
at the coronal slice through posterior commissure, intersect-
ing hippocampus and temporal lobe. In each of the regions
the boundaries of GM, WM, putamen, caudate and hippo-
campus were manually traced.

Our evaluation of agreement between the results of
automatic and manual segmentation used the Dice Similarity
Coecfficient (DSC) [44] and Multidimensional scaling (MDS)
technique. DSC provides a numeric measure of agreement in
the range between 0 and 1, with 1 corresponding to the per-
fect agreement. DSC can be used to quantify the agreement
between two labels. Multidimensional scaling (MDS) [45]
can be used in combination with the pairwise DSC assess-
ment to explore the relative performance of more than two
segmentation methods. MDS is a mathematical technique,
which finds the optimal projection of a collection of points in
a high-dimensional space into two dimensions in such a way
that the distances between corresponding projected points of
the graph are most similar to the distances in the original
higher-dimensional space [46]. Applied to our evaluation,
the set of points used in MDS analysis corresponded to the
five segmentation results of the validation regions R1-R3
(three obtained using automatic segmentation with different
atlases, and two completed by human raters). All three seg-
mented regions corresponding to the individual subject were
merged into one volume for the calculation of DSC, so that
the DSC measure for white matter, gray matter and CSF was
computed over the labels of these structures from all three

I-SGM -
I-PUT I-CAU I-HPC
r-SGM
r-PUT r-CAU r-HPC
CGM
5 6

Fig. (5). Hierarchy of the tissue classes used by EM Segmenter for vervet brain MRI segmentation. The shaded boxes correspond to the leaf
nodes of the tree hierarchy. Each of the leaf nodes of the tree is assigned a spatial prior defined by the probabilistic atlas of the corresponding
structure. The white boxes define the logical groups of the substructures. Class labels: background (BG), white matter (WM), gray matter
(GM) and cerebrospinal fluid (CSF) (WGM class consists of WM, GM and CSF), cerebellum (CB), brainstem (BS), cortical GM (CGM), left
and right sub-cortical GM (I/r-SGM), and subcortical structures of interest: caudate (CAU), putamen (PUT) and the hippocampus (HPC).
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Fig. (6). Two-dimensional regions used for validation of the automatic segmentation approach, overlayed on the coronal slices of the ubiased
atlas template. Left to right: R1, R2, R3 (see Section 2.3). CSF, GM, WM, putamen, caudate and hippocampus were manually traced in each
region. CSF was not considered in the analysis, since CSF cannot be reliably segmented in the skull-stripped images.

regions. The distance between the compared segmentation
results was calculated for each individual structure as the
dissimilarity (1-DSC) averaged across the 20 scans of the
subjects (pooled baseline and follow-up) for each of the la-
bels. Multidimensional scaling was performed using stan-
dard functionality of Matlab 7.10 (Mathworks, Natick, MA,
USA). The accuracy of the MDS projections was examined
using the residual plots that show the correspondence be-
tween the original and projected distances between the
points. In the cases when the projection is good, the pro-
jected and original distances between the points should be
similar.

The MDS projections provide a summary view of the
agreement between multiple pairs of measurements. For the
purposes of quantitative evaluation, we compared the DSC
measure of overlap between the results of the manual tracing
and the segmentations obtained automatically for gray mat-
ter, white matter, putamen, caudate and hippocampus. Given
the DSC measures computed between the segmentations
produced by one of the raters and each of the automatic re-
sults obtained using different atlases, we performed group
comparison to quantify the differences in their agreement
with the manual segmentation. We also evaluated whether
there is significant difference between the segmentation ac-
curacy for the baseline scans used to construct the atlas, and
the follow-up scans.

Two-sided paired t-tests were used for evaluating the
significance of the difference between two groups. One-way
ANOVA, followed by the Tukey's range test, was applied to
compare more than two groups. In the cases where statistical
tests were applied to DSC values, the data was logit trans-
formed [47], since the distribution of DSC does not satisfy
the normality assumption. DSC measures for the baseline
and follow-up scans were pooled together in this compari-
son. Statistical analysis was using R Environment for Statis-
tical Computing (R Core Development Team, Vienna, Aus-
tria).

3. RESULTS

Three sets of results were obtained using each of the at-
lases considered in this study. Processing was performed on
a computer equipped with a 16-core 2.6 GHz Intel Xeon
CPU. Non-rigid registration of the template to the subject
required approximately 11 minutes for B-spline registration,
and 24 minutes for the diffeomorphic registration. Once the
alignment of the spatial priors with the individual scan was
recovered, the processing time required for segmenting one

dataset using the multi-threaded implementation of EM Seg-
menter (the standard implementation available as part of 3D
Slicer) was under 7 minutes. The segmentation results were
visually examined to ensure overall correctness of the seg-
mentations, see Fig. (7) for an example.

Representative MDS projections for the segmented tis-
sues are provided in Fig. (8). Small values of the embedding
errors led us to conclude that the quality of projections was
satisfactory. In most cases the results produced with the
population-specific vervet atlas (using either biased or unbi-
ased approach) were nearly equidistant from the segmenta-
tions produced by either of the manual raters. The segmenta-
tion results produced using different atlases were more con-
sistent for gray and white matter segmentations. The seg-
mentations of subcortical gray matter produced using the
biased atlas were nearly at equal distance from each of the
raters. The result obtained with the rhesus atlas for subcorti-
cal structures was more similar to the segmentations of one
of the raters for the hippocampus and putamen labels. With
the exception of the hippocampus, segmentations generated
using the unbiased atlas were most similar to the manual
segmentations, and were located at similar distance from
both raters. For hippocampus, the biased atlas appears to
provide results most similar to the manually produced seg-
mentations.

Logit-transformed Dice scores for gray matter (GM),
white matter (WM), putamen (PUT), caudate (CAU) and
hippocampus (HPC) were compared between automatic
segmentation results and manual segmentations prepared by
Raterl. Overall, we observed higher variability of the
agreement between the automatically generated results and
the manual segmentations for the subcortical structures as
can be observed in Fig. (9). A two-tailed paired t-test be-
tween the DSC for the baseline and follow-up scans revealed
statistically significant improvement in the overlap of the
WM label segmented in the follow-up scans for all of the
three atlases. This seems to indicate that the segmentation is
more reliable for the follow-up scans. We believe this is due
to the improved contrast-to-noise ratio in the follow-up scans
(as we discussed in Section 2.2.2), which may contribute to
the better quality of the automatic segmentation.

Next we used an ANOVA to assess the impact of the
atlas on the agreement of the automatic segmentation result
with the expert segmentation. We found that atlas choice had
statistically significant effects for CAU, PUT and HPC Ia-
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Unbiased atlas

Fig. (7). Top row: qualitative comparison of the automatic segmentation results obtained using different atlases. The differ-
ences are mostly localized to subcortical GM. Bottom row: GM/WM/CSF segmentation for the R1 region used in the evalua-

tion. Note inconsistencies in CSF segmentation by the raters.

Fig. (8). Representative MDS projections of the relative affinity between the manual segmentations and the automatic segmentation results
using the three atlas construction approaches: caudate (left) and hippocampus (right). Note that the caudate label, the projections of the points
that correspond to the segmentations prepared using biased and unbiased atlases overlap. Segmentation results for the caudate are equidistant
from the results produced by both raters, while for the hippocampus there is no agreement among the automatic segmentation results.

bels. For the caudate we observed significant improvement
in the DSC value due to the use of vervet-specific atlases,
with the mean improvement in DSC of 0.066 (p<0.0014)
and 0.083 (p<0.000015) for the biased and unbiased atlases,
respectively. In the case of PUT label, we found significant
improvement due to the use of the unbiased atlas instead of
the biased one (mean improvement 0.063, p<0.0094). How-
ever, for the hippocampus, the only statistically significant
improvement was observed due to the use of the biased in-
stead of the rhesus atlas (mean improvement 0.057,
p<0.035). The atlas choice did not have a statistically sig-
nificant effect on the DSC for the WM and GM labels, in
agreement with the visual assessment of the MDS analysis
results. There are two contributing factors that may explain
the latter observation. First, segmentation of these structures
relies primarily on the signal intensity, and not on the prob-
abilistic atlas. Second, GM and WM labels occupy larger
volumes, and the DSC measure is less sensitive to the seg-
mentation errors of the larger structures.

Our further analysis was focused on the unbiased atlas,
since its use leads to improved agreement with the rater re-
sult for the caudate (compared to the rhesus atlases) and pu-
tamen labels (compared to the biased atlas), and no signifi-

cant difference was found for the hippocampus. We evalu-
ated whether the agreement between the segmentations pro-
duced automatically using the unbiased atlas and the manual
tracings by each of the raters is significantly different from
the inter-rater agreement. Statistical analysis across the five
tissues of interest revealed that the performance of the auto-
matic segmentation was comparable with the manually ob-
tained results for all of the structures except the hippocam-
pus, where the agreement between the raters is significantly
higher than the agreement of the automatic segmentation
results with each of the raters (one-way ANOVA followed
by the Tukey's test, p<0.001).

4. DISCUSSION

The continuous technical improvements of MRI technol-
ogy leads to increasing spatial resolution of the images,
which require more time for their manual segmentation.
Manual processing becomes even more infeasible as the
population sizes and the number of regions of interest in-
creases. Additionally, manual segmentation is subject to
rater bias and may not be easily reproducible. The availabil-
ity of image processing tools for automatic processing of
MR images therefore becomes critical. In this work we nar-
rowed the existing gap in NHP image analysis by providing
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Fig. (9). Distribution of the DSC between the automatic segmentation results and the manual segmentations produced by each of the raters.
Top row: baseline data, bottom row: follow-up data. The choice of atlas has little impact on the GM/WM segmentation. For the subcortical
structures, we observed improved agreement with the raters when the unibased vervet atlas was used (see caudate (CAU) and putamen (PUT)
labels). There is less agreement between the automatically generated results and the raters for the hippocampus segmentation.

an atlas of the vervet monkey brain and describing a detailed
approach to vervet brain MRI segmentation using that atlas.
Our evaluation showed that the performance of the automatic
segmentation is comparable with the results produced by
human experts. We observed particularly good quality of
segmentation for the gray matter and white matter tissues,
the most laborious aspect of manual tracing. We found that
the automatic segmentation is less accurate for the hippo-
campus segmentation. The contrast between the hippocam-
pus cross-section and surrounding tissues in R3 is stronger
than for the putamen and caudate (see Fig. 6), where the
boundaries are diffused with the adjacent isointense gray
matter. Because of this, the task of manual segmentation
may be easier for this structure, which explains the better
agreement between the raters for manual segmentations of
the hippocampus. In the future we plan to improve automatic
segmentation of this structure by incorporating shape con-
straints into the segmentation procedure [48].

Since the accuracy of the automatic segmentation is
comparable with the results produced by the raters, the time
required for the segmentation of these images can now be
reduced from approximately 30 minutes of manual contour-
ing per individual structure to under 30 minutes of unsuper-
vised processing per scan (the time needed for the registra-
tion of the template and segmentation of the gray matter,
white matter, caudate, putamen and hippocampus repre-
sented in our atlas).

We published online the average intensity atlas as well as
the probabilistic atlases for the individual structures of the
vervet brain [32]. The use of the population-specific atlas

leads to improved agreement with the expert for all three
subcortical structures, as compared to the results obtained
with the atlas of a closely related rhesus species. Our proc-
essing pipeline is generic and is applicable to construction of
the atlases for other species or ages, since the tools we used
are publicly available. A unique aspect of our work is the
quantitative comparison of the biased and unbiased atlas
construction approaches. Our results show that the use of the
unbiased population specific atlas results in an increased
accuracy of segmentation for some of the analyzed struc-
tures, which agrees with the earlier study for human brain
MRI segmentation [49].

The processing pipeline developed as the result of our
study is based on open source tools, with most of the com-
ponents available within 3D Slicer. We believe this will fa-
cilitate the adoption of the presented methodology in similar
studies. We note that most of the existing studies in NHP
MRI processing used publicly available software compo-
nents. Wisco et al. [50] used 3D Slicer for some of the proc-
essing steps in their pipeline. Styner et al. [19] applied pub-
licly available itkEMS [51] to segment rhesus brain. At the
same time, some of the critical components utilized in these
studies (e.g., registration tools) are not available, which does
not permit the application of the developed pipelines to simi-
lar problems. It has also been shown that conventional tools
originally developed for human MRI analysis can be applied
to NHP imaging. McLaren et al. [15] used FSL tools for
some of the processing steps to create the rhesus macaque
atlas. Kochunov et al. used the FSL components to study
fetal brain development in baboons [24,52]. Mietchen et al.
[22] combined several tools including surface-based analysis
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suite by Van Essen et al. [53], FSL and custom filtering
components for morphological brain analysis across multiple
NHP species. These studies were made possible because of
the public availability of the FSL tools. By developing and
validating the presented processing pipeline, we show that
3D Slicer can also be used for the analysis of NHP MRIs.
The added benefit of using 3D Slicer is the unrestricted abil-
ity to modify, customize and distribute its source code to
meet any application-specific needs.

Our study has several limitations. Due to the specifics of
the studied population, our atlas is representative only of the
adolescent male vervet species. Our population was limited
to 10 subjects, which may not be sufficient to represent ana-
tomical variation. Our average intensity atlas is limited to T1
weighted (T1w) MRI. Although T2 weighted (T2w) se-
quences were included in the imaging protocol, we chose not
to use these for atlas construction due to the significant dis-
crepancy in slice thickness (0.5 mm slice thickness in T1w, 1
mm in T2w). The segmentation approach that we used can
be further improved by incorporating shape constraints into
the segmentation process, as proposed by Pohl et al. [48].

CONCLUSIONS

We presented an open source solution composed of the
commonly available 3D Slicer tools to the automatic atlas-
based segmentation of vervet brain MRIs. Our approach re-
lies on computerized atlases of the average T1 signal inten-
sity, and probabilistic atlases for the vervet brain MRI,
which we developed as part of this work. The advantages of
our pipeline over manual processing are reproducibility and
reduced processing time. By carefully tuning the registration
and segmentation steps, we produced high quality segmenta-
tions of challenging images, reducing the time needed for
their processing, and improving the segmentation reproduci-
bility. The flexibility of parameter tuning provided by the
open source tools is critical for the analysis of non-
conventional images. The animals used in our study derive
from a colony of animals that are currently housed at Wake
Forest University Primate Center. This colony is a NCRR
resource that is part of a 9-generation, pedigreed and par-
tially genotyped colony of vervet monkeys. As such, this
animal resource will be exploited for multiple NHP studies
and the presented methodology will be applicable to facili-
tate these studies in the near future.

We believe that the contributions of our work will assist
in similar in vivo studies that rely on MRI for region-based
morphological analysis of vervet brain. The digital vervet
atlas we developed is now available as an open resource
[32]. Our workflow is composed of free open source soft-
ware tools available within 3D Slicer [27], which can be
used without restrictions for either research or commercial
purposes.
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