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Abstract: Magnetic resonance imaging (MRI) and spectroscopy (MRS) are versatile diagnostic techniques capable of 

characterizing the complex stroke pathophysiology, and hold great promise for guiding stroke treatment. Particularly, 

tissue viability and salvageability are closely associated with its metabolic status. Upon ischemia, ischemic tissue 

metabolism is disrupted including altered metabolism of glucose and oxygen, elevated lactate production/accumulation, 

tissue acidification and eventually, adenosine triphosphate (ATP) depletion and energy failure. Whereas metabolism 

impairment during ischemic stroke is complex, it may be monitored non-invasively with magnetic resonance (MR)-based 

techniques. Our current article provides a concise overview of stroke pathology, conventional and emerging imaging and 

spectroscopy techniques, and data analysis tools for characterizing ischemic tissue damage.  
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1. INTRODUCTION 

 Ischemic brain tissue damage mechanisms are complex, 
and have been categorized into pathophysiology, 
biochemistry, gene expression, cell signaling, pharmacology, 
and neuroimaging changes [1-3]. Magnetic resonance (MR)-
based techniques have been playing a vital role not only to 
assist our understanding of stroke pathology but also to help 
guide stroke patient management [4-10]. As such, it is 
important to define relevant pathophysiologic mechanisms in 
stroke as determined by molecular and functional 
neuroimaging, identify and prospectively validate surrogate 
imaging biomarkers of tissue injury for early prediction of 
tissue outcome, and ultimately guide individualized stroke 
treatment, both in experimental stroke models and 
translational clinical investigation [11-13]. Our article 
provides a concise overview of stroke pathology, 
conventional and emerging MRI and MRS techniques, and 
multi-parametric data analysis tools that characterize the 
hemodynamic, metabolic, structural impairments subsequent 
to ischemic injury.  

2. ISCHEMIC STROKE TISSUE DAMAGE 

 Ischemic stroke occurs when a major cerebral artery 
becomes blocked, causing severe hypoperfusion to the brain. 
Blood clots are the most common cause of artery blockage 
and brain infarction. After ischemic stroke brain tissue 
ceases to function and latterly suffers irreversible injury 
possibly leading to death of the tissue, i.e., infarction. Upon 
ischemia, tissue becomes low in energy substrates including 
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glucose and oxygen, and resorts to anaerobic respiration. 
Anaerobic glycolysis, however, produces less adenosine 
triphosphate (ATP) yet releases lactic acid as a byproduct. 
Lactic acid is an irritant and at high concentration, could 
further disrupt tissue metabolism and potentially destroy 
cells [1]. The major cascade of neuronal injury and brain 
infarction after ischemic stroke is initiated when the energy 
production such as ATP fails, leading to failure of energy-
dependent processes (such as ion pumping) that are vital for 
cell viability [14]. Another major cause of neuronal injury is 
the release of excitatory neurotransmitters such as glutamate. 
The extracellular glutamate concentration is normally kept 
low, powered by the concentration gradients of ions (mainly 
Na

+
) across the neuronal cell membrane. After stroke, the 

energy-dependent trans-membrane ion gradients run down, 
and glutamate transporters reverse their direction, releasing 
glutamate into the extracellular space. Glutamate acts on 
receptors in neuronal cells and therefore, produces an influx 
of calcium that activates enzymes that digest cellular 
proteins, lipids and nuclear materials. Calcium influx can 
also lead to the failure of mitochondria, which may cause 
further energy deterioration. Ischemia also induces 
production of free radicals and other reactive oxygen species, 
which may react with and subsequently damage a number of 
cellular and extracellular elements. In addition to injurious 
effects on brain cells, the loss of neurovascular structural 
integrity and functional coupling may also result in 
neurological dysfunction, a breakdown of the protective 
blood brain barrier (BBB) that contributes to cerebral edema, 
which can cause secondary progression of the brain injury 
[3, 15]. 

 Emerging evidence suggests that ischemic brain damage 
is a dynamic process that evolves over time. The progression 
and the extent of ischemic injury are influenced by many 
factors, including age, severity and location of occlusion, 
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state of collateral and systemic circulation, hematological 
and coagulation factors, body temperature and blood glucose 
level, etc [16]. Furthermore, acute ischemic tissue often 
suffers a gradient loss of perfusion, rather than complete and 
homogeneous ischemia of the entire occluded vessel 
supplying territory [10]. The key pathophysiological concept 
is the delineation of ischemic tissue into three operational 
compartments. Regions suffering the most severe 
hypoperfusion rapidly progress to irreversible damage and 
inevitably infarct, representing the ischemic core. The 
remaining hypoperfused tissue exhibits impairment of the 
normal blood flow autoregulatory mechanisms and can be 
pathophysiologically divided into two compartments, 
namely, salvageable tissue at risk of infarction ‘penumbra’ 
and mild ischemic tissue at no immediate risk of infarction 
‘oligaemia’[17]. The ischemic penumbra was originally 
described on electrophysiological basis as the tissue existing 
between the thresholds of electrical failure and ion pump 
failure [18]. In the ischemic penumbra, oxygen metabolism 
is preserved and thereby potentially salvageable. Its extent 
however, decreases over time due to gradual deterioration 
and as such, represents a key target for therapeutic 
intervention [19]. Whereas this course of events varies from 
patient to patient, it has been shown that ischemic penumbra 
may last for many hours after stroke onset [20]. Timely 
rescue of the penumbra, either by restoration of blood supply 
or interruption of the adverse metabolic or neurochemical 
cascades, is the basis of acute stroke therapy. The benign 
oligaemic tissue, on the other hand, suffers a mild degree of 
hypoperfusion with normal oxygen consumption and 
elevated cerebral blood volume (CBV) and oxygen 
extraction fraction (OEF), and is not at immediate risk of 
infarction. If the occlusion persists, however, secondary 
events such as systemic hypotension, intracranial 
hypertension or hyperglycaemia may topple this delicate 
balance and induce the oligaemic tissue to transform into 
penumbral state and eventually being recruited into the 
necrotic core [17]. 

3. MRS CHARACTERIZATION OF ACUTE STROKE 

 Magnetic resonance spectroscopy (MRS) is capable of 
studying cellular biochemistry and metabolism by measuring 
various cerebral metabolites, providing a noninvasive and 
sensitive means to assess acute ischemic stroke and its 
progression [21]. Studies of metabolites using proton (

1
H) 

and phosphorus-31 (
31

P) MRS have enormously contributed 
to our understanding of cellular metabolism and 
pathophysiologic processes of cerebral ischemia. Single-
voxel based MRS techniques such as point resolved 
spectroscopy (PRESS) or stimulated echo acquisition mode 
(STEAM) have been increasingly employed in stroke exams 
due to its widespread availability and reasonable acquisition 
time. Recently, there has been great interest in the 
development of magnetic resonance spectroscopic imaging 
(MRSI), which can provide information regarding the spatial 
distribution of metabolites after stroke [22-26] by means of 
metabolite maps [25], despite moderately longer acquisition 
time. 

 Among various metabolites detectable by 
1
H MRS, 

increase in lactate (1.33 ppm) is the most prominent feature 
of ischemic stroke. Lactate, produced as a metabolic end-
product of anaerobic glycolysis after the onset of ischemic 

insult, provides a sensitive means for detecting acute stroke 
[27, 28]. In 

1
H MR spectra obtained at short echo time, 

lactate signal overlaps with lipid peaks (0.9-1.4 ppm), 
rendering quantitative detection of lactate difficult. Due to 
the short T2 relaxation time of lipids, long echo time spectra 
can suppress the lipid signal and facilitate the measurement 
of lactate [29]. It is noteworthy that the signal of lactate 
modulates with echo time due to J-coupling [30], and the 
lactate doublet peaks are in phase and usually acquired at TE 
= 136 (inverted) or 272 ms. Apart from lactate, N-acetyl 
aspartate (NAA; 2.01 ppm) is found to decrease after onset 
of stroke and continues to decline with time in ischemic 
lesion [27, 28]. Being highly correlated with histological 
findings in animal studies, NAA signal decrease indicates 
neuronal loss or damage after cerebral ischemia [31, 32]. As 
such, NAA may serve as a metabolic marker in determining 
early tissue viability. The degree of ischemia and neuronal 
viability as determined by levels of lactate and NAA, 
respectively, during acute phase of ischemic stroke has been 
shown to correlate with the severity of ischemic insult and 
outcome [33, 34]. Maniega et al. demonstrated that temporal 
evolutions of both lactate and NAA concentrations in stroke 
patients can provide useful insights into the dynamics of 
ischemic stroke [35]. Furthermore, it has been suggested that 
region with near normal NAA but elevated lactate level may 
represent salvageable ischemic penumbra in acute stroke [25, 
36, 37]. 

 31
P MRS has been used to study energy states in ischemic 

stroke by assessing the high-energy phosphorus-containing 
moieties participating in energy metabolism, particularly 
ATP and phosphocreatine (PCr) [38-42]. During ischemia, 
PCr energy buffer decreases with the increase of inorganic 
phosphate (Pi) in order to maintain ATP homeostasis, and 
ATP levels decreases once PCr buffer is depleted. In 
addition, 

31
P MRS can provide information about 

intracellular acidosis by determining the difference in 
chemical shift between the Pi and PCr peaks ( ) as pH = 6.72 
+ log((  - 3.27) / (5.69 – )) [38, 39, 41, 43]. 

4. MRI CHARACTERIZATION OF ACUTE STROKE 

 Commonly used stroke MRI methods include perfusion, 
diffusion and relaxation MRI. In addition, magnetization 
transfer (MT) and pH-weighted amide proton chemical 
exchange saturation transfer (CEST) MRI are also being 
explored for stroke imaging. It is important to note that 
whereas computed tomography (CT) is the most utilized 
method while positron emission tomography (PET) provides 
more specific characterization of tissue metabolism and 
perfusion, MRI is widely used due to its multi-parametric 
diagnosis capability, relatively easy access and non-
ionization radiation [8, 11, 13, 44-46]. 

4.1. Perfusion and Diffusion MRI 

 Perfusion and diffusion MRI are most commonly used 
stroke imaging techniques, providing information about 
disrupted hemodynamic and cellular structural status [17, 47-
51]. Whereas MR angiogram can detect the location and 
severity of occlusion, the downstream tissue hemodynamic 
status can be better characterized with dynamic susceptibility 
contrast (DSC), dynamic contrast enhance (DCE) and 
arterial spin labeling (ASL) techniques, providing 
quantitative parameters such as cerebral blood flow (CBF), 
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volume (CBV) and mean transit time (MTT), etc [52, 53]. 
Particularly, ASL MRI employs arterial water as an 
endogenous tracer, and is completely non-invasive and very 
popular in pre-clinical studies [54, 55]. Nevertheless, 
quantitative perfusion imaging requires assessment of the 
hemodynamic system such as the arterial input function 
(AIF) and often assumes intact blood brain barrier (BBB), 
which may be somewhat oversimplified. Recently, an 
endogenous imaging technique dubbed modulation of tissue 
and vessel (MOTIVE) has been proposed to quantify arterial 
blood volume, which may augment contrast enhanced 
perfusion MRI [56]. On the other hand, cerebral perfusion is 
complex and depends on the physiological states and 
anatomy. Particularly, it has been found that brain white 
matter (WM) and grey matter (GM) have different perfusion 
thresholds for ischemia, and a tissue-specific rather than 
whole brain threshold has been suggested for better 
prediction of infarction [57].  

 Diffusion MRI measures the random Brownian motion of 
water molecules, and has been regarded as one of the most 
sensitive MRI parameters for imaging stroke [58-63]. It 
detects ischemic lesion within minutes after hypoperfusion, 
significantly earlier than the conventional relaxation-based 
methods [64]. In fact, the development of diffusion-weighted 
imaging (DWI) has transformed the use of MRI for acute 
stroke imaging. Specifically, diffusion MRI detects severely 
injured ischemic tissue while the hypoperfused tissue can be 
identified with perfusion MRI, leading to the postulation that 
the mismatch between perfusion and diffusion lesions 
represents salvageable ischemic tissue [34, 65, 66]. While on 
the other hand, diffusion lesion, if treated promptly, is 
reversible yet its long term outcome is rather variable [67-
69]. In addition, metabolic impairment within the diffusion 
lesion has been found to be non-uniform, which may 
partially explain its heterogeneous outcome [68, 70]. 
Therefore, the perfusion/diffusion mismatch provides a very 
useful yet somewhat crude estimation of ischemic penumbra 
and new surrogate imaging biomarkers are urgently needed 
to better delineate the heterogeneous ischemic tissue damage 
[71, 72].  

4.2. T2 and T2 * MRI 

 T2 is a fundamental MRI parameter, sensitive to 
vasogenic edema and increased water content, and 
significant T2 prolongation often suggests irreversible tissue 
damage [73-75]. T2 increase in ischemic lesion has also been 
suggested to be associated with change in magnetization 
transfer between mobile and immobile proton pools due to 
structural water alteration [76-78], in which reduced bound 
water fraction in ischemic tissue leads to T2 prolongation 
without significant change in water content. Being highly 
correlated with established histological and enzymatic 
techniques, volume with elevated T2 in late stages has been 
widely used to estimate final infarct size noninvasively [79, 
80]. In addition, Siemonsen et al. showed that T2 difference 
between infarct core and contralateral brain tissue was highly 
correlated with the time from symptom onset, allowing 
estimation of lesion age which is usually unclear clinically 
[81]. It should be noted that T2 has been shown to decrease 
moderately during the initial period of ischemia (hyperacute 
phase) in which concentration of deoxyhemoglobin increases 
in areas of hypoperfusion, leading to an increased amount of 

spin dephasing of diffusing protons [82-84]. Moreover, 
transient T2 normalization during the subacute stage of 
ischemic stroke has been reported, likely due to transient 
normalization of water content [85]. 

 T2* is another informative MRI parameter that is 
sensitive to the local blood oxygenation level, known as 
blood oxygenation level-dependent (BOLD) effect and 
widely used in functional MRI (fMRI) [86, 87]. Signal 
change due to the BOLD effect has been observed in acute 
ischemic stroke using T2*-weighted imaging [88-91]. It has 
been shown that regions of viable yet ischemic brain tissue 
exhibit decreased T2* and T2' (corrected with spin-spin 
effects) as a result of an increase in regional 
deoxyhemoglobin concentration caused by elevated oxygen 
extraction fraction (OEF) and hypoperfusion [90, 91]. 
Moreover, T2* signal change has been used to detect changes 
in cerebrovascular reactivity during and after transient 
ischemia to assess tissue damage in animals. Ono et al. 
illustrated that impaired CO2 reactivity after transient 
ischemia revealed irreversible ischemic damage, whereas 
recovered CO2 reactivity during reperfusion indicated 
absence of pathological damage [92]. Furthermore, Santosh 
et al. demonstrated that in permanent middle cerebral artery 
occlusion (MCAO) model, areas with increased T2* signal 
indicate oxygen utilization, which is viable and 
metabolically active, while areas without significant T2* 
signal change suggest severely disrupted metabolism and are 
likely severely damaged [93]. 

4.3. pH-weighted MRI 

 Whereas tissue pH can be assessed by 
31

P MRS and to 
some extent, lactate MRS, their spatiotemporal resolution is 
limited and not suitable for routine examination of acute 
stroke patients [94-97]. To address this, pH imaging has 
been developed, based on the principle of chemical exchange 
saturation transfer (CEST) MRI [98]. CEST MRI is an 
emerging MRI method capable of detecting dilute labile 
proton groups and local pH [99-104]. In particular, amide 
proton transfer (APT) MRI, a specific form of CEST MRI 
that probes pH-dependent amide proton exchange from 
endogenous mobile proteins and polypeptides, offers a non-
invasive pH imaging technique for characterizing ischemic 
acidosis [102, 105, 106]. Noteworthily, the sensitivity of pH 
MRI is significantly higher than MRS-based methods (e.g., 
lactate and 

31
P MRI), and permits pH mapping at 

spatiotemporal resolution comparable to that of ASL MRI 
[103, 107].  

 Both numerical simulation and empirical solutions have 
been developed to guide optimization and quantification of 
CEST MRI since the pioneering work of Balaban et al. [108-
112]. pH-weighted APT MRI has been translated to image 
ischemic acidosis, an early marker of impaired tissue 
metabolism [113-115]. Specifically, Sun et al. established a 
dual 2-pool mathematical model to describe in vivo APT 
MRI during acute stroke, and quantified the endogenous 
mobile amide proton concentration and exchange rate [109, 
116]. In addition, pH-weighted APT MRI lesion detects not 
only severely injured ischemic lesion that shows diffusion 
abnormality, but also ischemic lesions with T2 hypointensity, 
a surrogate marker for altered oxygen metabolism [91, 93]. 
Moreover, it has been suggested that pH-weighted APT MRI 
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can better predict stroke outcome, in complementary to the 
commonly used perfusion and diffusion MRI [117]. 
Recently, Jokivarsi et al. also showed that pH-weighted APT 
contrast correlates with lactate MRS [118]. In addition, we 
have demonstrated that the correlation between endogenous 
APT contrast and lactate content can be enhanced with T1-
normalized APT MRI, consistent with the fact that 
APT/CEST contrast approximately scales with T1. 
Nevertheless, in vivo APT MRI is complex. In addition to 
pH-weighted APT contrast, it is also susceptible to 
concomitant RF irradiation effects, slightly asymmetric 
semisolid macromolecular magnetization transfer (MT) and 
nuclear overhauser effect (NOE), which have to be further 
investigated for quantitative pH imaging [119-121]. 
Noteworthily, pH MRI may be suitable for studying transient 
ischemic attack (TIA). For instance, Sicard et al. showed that 
despite full recovery of perfusion and diffusion images, 
animals with transient MCAO (tMCAO) showed delayed 
normalization in behavior and fMRI, suggesting prolonged 
neuronal damage [122]. Similarly, Bisschops et al. reported 
that although the neurological deficits of TIA patients are 
transient, their metabolic changes are present days after the 
onset of symptoms, and not limited to the symptomatic 
hemisphere [123]. Therefore, multi-parametric 
characterization of tissue metabolic status such as tissue pH 
and lactate may provide new insights into TIA. While on the 
other hand, whereas endogenous APT MRI has been shown 
capable of detecting ischemic acidosis 24 hr after MCAO, its 
contrast is very complex due to proteolysis, change in tissue 
temperature and relaxation times [106, 117, 124]. To address 
this limitation, additional mathematical modeling is needed 
to delineate tissue pH from the confounding amide proton 
concentration effect [102, 125]. 

4.4. Sodium MRI 

 Sodium (Na) MRI offers a very promising imaging 
technique to examine tissue viability [126]. Well regulated 
sodium balance is vital for cell viability: the cytoplasm has 
low sodium yet high potassium concentration, in contrast to 
interstitial space. The regulation of sodium and potassium 
depends on ATP dependent active transporters, which 
dysfunctions upon membrane depolarization during ischemia 
[127, 128]. Subsequently, cytoplasm sodium level increases 
significantly, which may serve as a specific marker for 
metabolic disruption and cell viability [129]. Whereas T2 of 
sodium MR signal is very short, twisted projection imaging 
(TPI) has been developed that permits three-dimensional 
acquisition of sodium imaging in vivo [130]. In addition, 
intracellular sodium can be differentiated from interstitial 
space using double quantum filter, which may further 
improve the specificity of sodium imaging. Moreover, it has 
been shown that the total sodium concentration may serve as 
a tissue clock for estimating stroke onset time, aiding stroke 
treatment [131, 132].  

5. MULTI-PARAMETRIC IMAGE ANALYSIS 

 Due to the dynamic nature of ischemic tissue damage, a 

single MRI parameter often has its own time window to 

reveal the abnormality, and thus may not fully characterize 

the ischemic tissue injury [133]. For instance, ADC declines 

rapidly within minutes of ischemic stroke, but it pseudo-

normalizes and even rises above the normal range in latter 

stages [68]. Therefore, the multi-parametric MRI analysis is 

necessary to assess the heterogeneous ischemic tissue 

damage [13, 134]. Specifically, methods including 

generalized linear model (GLM), K-means, fuzzy c-means, 

and interactive self-organizing data analysis technique 

algorithm (ISODATA) segmentation with multi-parametric 

MRI have been suggested for ischemic tissue classification 

[44, 135, 136]. In particular, ISODATA is an unsupervised 

segmentation algorithm based on cluster analysis which can 

recognize structures within a data set and automatically 

determine the number of clusters [137]. Multiple tissue 

signatures can be segmented from the data set by ISODATA, 

generating a theme map that reflects different tissue clusters 

[138]. Studies have shown that ISODATA technique can 

accurately define the ischemic region which was well 

correlated with histologically determined lesion at different 

stages after stroke [136, 139], and ISODATA lesion volume 

at acute stage has strong correlation with stroke outcome 

[138, 140]. Increasing the dimensionality of the ISODATA 

model by incorporating additional images has been shown to 

better demarcate tissue clusters [139, 141]. Moreover, the 

heterogeneity within the ischemic lesion in the ISODATA 

theme map has been suggested to indicate heterogeneous 

tissue damage [142]. Furthermore, Shen et al. showed that 

employing statistical algorithm following ISODATA tissue 

clustering can help improve the prediction of the ischemic 

tissue outcome in animal models [143, 144]. Specifically, a 

training data set was used to derive the probability profiles of 

tissue fate pixel-by-pixel, which were then applied to 

generate maps of risk of subsequent infarction. Such a 

predictive approach has been shown to improve the 

predication in transient stroke by taking into account of the 

regional susceptibility to infarction [144]. More recently, 

predictive algorithm based on artificial neural network has 

also been developed for prediction of ischemic tissue fate 

based on multiparametric MRI data [145]. These predictive 

models, if fully developed, may greatly aid clinical decision 

making in the treatment of acute stroke by providing 
objective predictions of ischemic tissue fates. 

6. CONCLUSIONS AND PROSPECTS  

 MRI and MRS techniques have greatly improved our 
understanding of stroke pathophysiology. In addition, 
emerging MR techniques are being developed to capture new 
facets of ischemic tissue damage with enhanced sensitivity 
and specificity. Such a breadth of information can be 
characterized with multi-parametric analysis tools for 
improved tissue classification. Most importantly, further 
development and validation of MR techniques and image 
analysis tools may help establish imaging-based outcome 
prediction algorithms and ultimately, guide individualized 
stroke treatment.  
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