RESEARCH ARTICLE
Alterations of Contralateral Thalamic Perfusion in Neuropathic Pain
Takahiro Ushida*, 1, 3, Mitsutaka Fukumoto2, Carlos Binti3, Tatsunori Ikemoto1, Shinichirou Taniguchi, Masahiko Ikeuchi1, Makoto Nishihara3, Toshikazu Tani1
Article Information
Identifiers and Pagination:
Year: 2010Volume: 4
First Page: 182
Last Page: 186
Publisher ID: TONIJ-4-182
DOI: 10.2174/1874440001004010182
PMID: 21347202
PMCID: PMC3043277
Article History:
Received Date: 18/5/2009Revision Received Date: 15/12/2009
Acceptance Date: 12/2/2010
Electronic publication date: 24/11/2010
Collection year: 2010

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.
Abstract
Contralateral thalamus, the place of termination of spinothalamic tract, is affected in patients with pain. We employed single photon emission computed tomography (SPECT) to evaluate the thalamic perfusion in patients with spontaneous neuropathic pain. Ten patients with complex regional pain syndrome (CRPS) and eleven radiculopathiy patients were enrolled in this study. Regional cerebral blood flow of thalamus was assessed bilaterally by iodine-123-labelled iodoamphetamine SPECT. To standardize the inter-patient data, we set a contralateral thalamic uptake index (CTUI) for assessing thalamic asymmetry. In one study, we found elevation of CTUI in patients with symptoms of neuropathic pain for less than 12 month, whereas no change was observed in the case of a longer lasting disease. An another study demonstrated decrease of CTUI after pain treatment, even though it was unrelated to the pain intensity prior to treatment. Our SPECT study revealed that neuropathic pain altered thalamic neuronal activity. CTUIs were increased in early stage of the disease but decreased as the disease progressed to the chronic stage. These results suggest that CTUI can be used to improve management of neuropathic pain for proper evaluation of spontaneous pain.