RESEARCH ARTICLE
Functional MRI of Rehabilitation in Chronic Stroke Patients Using Novel MR-Compatible Hand Robots
Dionyssios Mintzopoulos1, 2, Azadeh Khanicheh3, Angelos A Konstas1, 2, Loukas G Astrakas1, 2, Aneesh B Singhal2, 4, Michael A Moskowitz2, 5, Bruce R Rosen2, A. Aria Tzika*, 1, 2
Article Information
Identifiers and Pagination:
Year: 2008Volume: 2
First Page: 94
Last Page: 101
Publisher ID: TONIJ-2-94
DOI: 10.2174/1874440000802010094
PMID: 19526075
PMCID: PMC2695624
Article History:
Received Date: 11/12/2007Revision Received Date: 05/5/2008
Acceptance Date: 11/7/2008
Electronic publication date: 27/9/2008
Collection year: 2008

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.
Abstract
We monitored brain activation after chronic stroke by combining functional magnetic resonance imaging (fMRI) with a novel MR-compatible, hand-induced, robotic device (MR_CHIROD). We evaluated 60 fMRI datasets on a 3 T MR system from five right-handed patients with left-sided stroke ≥6 months prior and mild to moderate hemiparesis. Patients trained the paretic right hand at approximately 75% of maximum strength with an exercise ball for 1 hour/day, 3 days/week for 4 weeks. Multi-level fMRI data were acquired before, during training, upon completion of training, and after a non-training period using parallel imaging employing GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) while the participant used the MR_CHIROD. Training increased the number of activated sensorimotor cortical voxels, indicating functional cortical plasticity in chronic stroke patients. The effect persisted four weeks after training completion, indicating the potential of rehabilitation in inducing cortical plasticity in chronic stroke patients.